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Chapter 1

License Terms and Conditions

1.1 License

This document is published under a Creative Commons License (CC BY-SA
4.0).

1.2 Disclaimer

This tutorial is not approved or endorsed by ESI Group or ESI-OpenCFD➤,
the producer of the OpenFOAM➤ software and owner of the OpenFOAM➤

trademark. This tutorial is not approved or endorsed by Kitware Inc.➤, the
producer of the Paraview➤ software and owner of the Paraview➤ trademark.

The major purpose of this tutorial is to pave and ease the way to using Open-
FOAM on HPC systems. It is designed as self-study tutorial. But if you really
have questions you cannot figure out by using Google, or asking colleagues, then
you can write me an e-mail (address is linked to the author above).

1.3 Requirements

You should be familiar with the following topics and tools, in order to follow
this tutorial’s lines and OpenFOAM’s workflows. But of course you might not
need all of the tutorials content.

❼ Mathematics/Physics: PDEs, CFD (to understand Why at all? you use
OpenFOAM)

❼ Linux (Bash/Coreutils – for essentially all OpenFOAM workflows)

❼ Environmental modules (LRZ HPC specific)
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❼ SSH (keys, tunnel – for HPC workflows)

❼ Slurm (basic usage – for HPC workflows)

❼ MPI (basic usage – for HPC workflows)

❼ C++ (for solver/tool development in OpenFOAM (for building Open-
FOAM1))

We do not put any efforts here into teaching any of these prerequisites, and
simply assume that you know them, or are willing to learn them on the way
(definitely the more difficult, but shorter way – just learn for the moment, what
you really need).

Some links to web pages and books for an introduction to these topics are
included in the Appendix A – Useful Links and Literature. We hope they are
helpful.

1At least recommended for the case you face compilation errors. This includes also knowl-
edge about the build tool chain.



Part I

Bird’s Eye View on
OpenFOAM
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Chapter 2

What is it? What is it not?

In a sentence: OpenFOAM➤ is a free (open source) C++ framework for manip-
ulating fields on meshes, which includes (as most interesting part) the solution
of PDEs (Partial Differential Equations) using the finite volume method. This
includes many CFD solvers/workflows. Is however not limited to them.

What it makes interesting for most users is that it does not include license
costs. Furthermore, it is designed to be adaptable to larger scale HPC-grade
(High Performance Computing) use cases by employing MPI (Message Passing
Interface) parallelism.

Still, there is a price to pay: Time! The entrance level to learning the usage of
OpenFOAM is quite high, due to the complexity of the OpenFOAM concept.
There is no GUI, primarily. Although such solutions can be found on the In-
ternet (e.g. Helyx OS), the primary workflow still involves basically ASCII file
handling, and command-line interaction.

This can however also be considered as a strength, because GUI workflows are
often not easy to automate.

As C++ framework, OpenFOAM is highly extensible. Writing software in C++
is but not amenable for everyone. And learning C++ class hierarchies and APIs
definitely not so, too. Even less are users probably interested in things like
software project management and coding style.

Fortunately, many users may use OpenFOAM just as a ready-to-use toolbox
without the need to write own solvers (the run-time tools). But this does not
make the business necessarily easier. Unless OpenFOAM is already provided on
a system, the OpenFOAM user has to install it for him-/herself. That is usually
quite a tedious procedure, although some efforts were undertaken to simplify
this procedure. So, even if you do not need to write own solvers, you need to
be familiar with the OpenFOAM tools and environments, and even the build
system.
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Another important issue with OpenFOAM is its schism. Currently, at least
three OpenFOAM providers have established on the market. For beginners, it
is usually very difficult to decide for the one or the other. And with the time
that has passed since the breakup, the OpenFOAM APIs and user interfaces
started to deviate. Although ESI tries to prevent this, it is probably impossible
in the long run.

So, OpenFOAM is not an easy-to-use-make-me-happy tool. And certainly it is
therefore not a tool for everybody.

However, for students of engineering and physics, the openness of the commu-
nity and the source code are very valuable for learning much about the fields
of shell handling, programming, computational science, engineering and science
workflows, without much thinking about monetary costs. And despite its com-
plexity and drawbacks, OpenFOAM is used very widely in science, engineering
and industry – not the least due to the strong, ambitious and flexible community.

Under the line, the decision for or against OpenFOAM must be made by every-
one individually. There are many pros and cons. But that is the case for each
piece of software.

In this tutorial, we assume that you decide to go on.



Chapter 3

Getting Started ± Installation and
Testing

This step might prove already the most difficult obstacle for many OpenFOAM
beginners. Unfortunately, there is no single installer available. But only some
options, we try to summarize.

You must first decide on

1. which Operating System you use:
Linux, Mac OS X, Windows

2. which OpenFOAM distribution you want to use:
ESI OpenFOAM, Foundation OpenFOAM, foam-extend

3. prebuild (pure usage ot run-time tools), or compiled from source (own
solver; needed feature)

There are maybe more OpenFOAM distributions out there, we don’t know of.

And although there are definitely more operating systems, we restrict us to
the three officially supported ones. Where however ”supported” must be put
into perspective. As open source C++ framework, you could build OpenFOAM
virtually everywhere where a C++ compiler is available. However, already the
build process requires some shell (bash or csh – where we prefer bash). Also
the third-party dependencies require the operating system support, what is not
always given, e.g. for Windows.

Windows offers the Windows Subsystem for Linux (WSL), which essentially
virtualizes a Linux (Ubuntu/Debian) operating system. An alternative would
be to use VirtualBox (also available for Mac OS X) in order to virtualize a Linux
operating system. The price to pay is that you need to learn to administer Linux.

But also environments like Cygwin and MSYS2 are available, which offer a
rather complete shell environment under Windows. Still, building OpenFOAM
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in such an environment might prove difficult (OpenFOAM in Cygwin, Open-
FOAM in MinGW).

For the tutorial, we decide to use ESI OpenFOAM v2112, as it provides the
widest scope of offer and flexibility. There are also Docker images, Windows
pre-builds, Linux packages, etc. available, possibly not available for other Open-
FOAM distributions. Many pre-build packages only provide the basic run-time
tools for using OpenFOAM. For extension and development, the sources are
missing. But please check the download pages! Things may change.

For installation, we show two examples:

❼ building from source on Linux (reasonable for LRZ cluster systems and
Linux desktops and Windows WSL/VirtualBox; and also to show how to
use the complete OpenFOAM software)

❼ using the MinGW prebuild installer (as Windows is mostly used on desk-
top systems; and for an introduction to OpenFOAM, it may suffice)

3.1 Installation from Source under Linux (LRZ)

Although the ESI build from source guide is rather complete, we add some more
steps in order to ease the installation procedure for beginners, and to prepare
you for the wider use and development of OpenFOAM. If not interested, you
can skip this section (at least in a first reading).

The steps are as follows:

1. check the requirements

2. download and unpack the OpenFOAM and Third-Party sources

3. prepare and source the etc/bashrc (setup of the environment)

4. build ParaView (optional; needed for in-situ post-processing and catalyst)

5. build other optional third-party packages (optional)

6. build OpenFOAM

7. check the installation

1. Check the Requirements. You need a C/C++ compiler (GCC/In-
tel/. . . ); bash shell environment (coreutils in many cases); CGAL/MPF/M-
PC/GMP (foamyQuadMesh etc.); a MPI library and headers (devel-package)
if MPI-parallel execution is desired; CMake; maybe more for other third-party
packages.

2. Download and unpack the OpenFOAM and Third-Party Sources.
The documentation pages provide the links for the download. For ESI Open-
FOAM v2112, they might look like these (this is changing from time-to-time):

https://openfoamwiki.net/index.php/Installation/Windows/Outdated/Using_Cygwin_for_cross-compiling_OpenFOAM
https://www.openfoam.com/download/openfoam-mingw-cross-compilation
https://www.openfoam.com/download/openfoam-mingw-cross-compilation
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https://dl.openfoam.com/source/v2112/OpenFOAM-v2112.tgz
https://dl.openfoam.com/source/v2112/ThirdParty-v2112.tgz

There has prevailed the habit to install OpenFOAM into ~/$HOME/OpenFOAM.
But now, any other folder would be fine as well. After the download, unpack
the two tarballs.

> wget https://dl.openfoam.com/source/v2112/OpenFOAM-v2112.tgz

> wget https://dl.openfoam.com/source/v2112/ThirdParty-v2112.tgz

> tar xf OpenFOAM-v2112.tgz

> tar xf ThirdParty-v2112.tgz

This might take some while. The result are two folders: OpenFOAM-v2112 and
ThirdParty-v2112.

3. Prepare and Source the etc/bashrc. The first thing to do is to open
OpenFOAM-v2112/etc/bashrc with an editor (vi(m), emacs, nano, jedit, . . . an
editor!!) and make necessary changes. The most important once are probably
on WM_COMPILER and WM_MPLIB, the compiler1 and MPI library to be used.

Which options are available is documented inside the bashrc. For instance, an
Intel Compiler (somewhere installed on the system) would require the settings

export WM_COMPILER_TYPE=system

export WM_COMPILER=Icc

For Intel MPI (as available in the environment like from module) only requires2

export WM_MPLIB=INTELMPI

Many more options (e.g. on integer label size, or floating point precision) are
available. We recommend to parse once through the bashrc in order to get a
slight overview.

For users, who want to use c-shell (csh), please use the cshrc instead. It looks
similar to the bashrc. The environment variables are necessarily the same.

The finer grained configuration possibilities for the third-party dependencies can
be found in etc/config.sh (etc/config.csh). But before doing any modifica-
tions here, try first with the default settings. They are usually quite reasonable.

The last step is to source the bashrc (modify your path if different):

> source ~/OpenFOAM/OpenFOAM-v2112/etc/bashrc

This should not throw any errors. If it does, please read carefully, and try to fix
this in the configuration. A general recommendation here is difficult as every
system might be different enough to throw very different errors. But this does

1If you use GCC, the latest versions are maybe too critical about C++. Older versions
usually work more smoothly.

2MPI_ROOT needs to be set to an external/system MPI.

https://dl.openfoam.com/source/v2112/OpenFOAM-v2112.tgz
https://dl.openfoam.com/source/v2112/ThirdParty-v2112.tgz
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not happen often, in our experience, with the defaults.3

With ESI OpenFOAM, you can now check whether your system is ready for the
OpenFOAM installation.

> foamSystemCheck

Checking basic system...

----------------------------------------------------------------

Shell: bash

Host: cm2login3

OS: Linux version 4.12.14-197.78-default

System check: PASS

==================

Can continue to OpenFOAM installation.

Again, if there appear errors, try to figure out (in worst cases by means of
Google) what the cause might be!

4. Build ParaView (optional). Now, change to the Third-Party directory
(e.g. cd ~/OpenFOAM/ThirdParty-v2112; but

> cd $WM_THIRD_PARTY_DIR

should definitely work after sourcing the bashrc), and try to build ParaView.
There is a build script to support your efforts – makeParaview. It has quite
some options, as you can see from

> ./makeParaView -help

Depending on what one needs, one must provide some of the dependencies (Qt,
Python, MPI, ...). If not available on the system, you would need to build them
on your own, and make them available to your ParaView installation script
(usually as some environment settings).

> ./makeParaview -python3 -mpi=0 -no-qt

was usually successful. But it might be necessary to play around and find a
working mode.

5. Build other optional Third-Party Packages (optional). The folder
$WM_THIRD_PARTY_DIR contains a lot of make... scripts. Qt, MPICH/MVA-
PICH/OPENMPI, PETSC, KAHIP/SCOTCH/METIS, VTK, ... essentially
almost all third-party dependency could be build by hand. Even the GCC
compiler could be build and used. If you succeed in doing so, you can just
tell OpenFOAM in the config.sh directory that you use the packages NOT
system-sided but from the Third-Party.

However, only few things are really needed. Even ParaView is not really neces-
sary. And as we build it here, it is sort of amputated, as we built it without GUI.

3If you think that you messed the shell, just restart from a fresh state.
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We will show later, why that’s not so important. And as only ParaView would
require Qt, we can also dispense with building Qt.

If you provide a MPI with your system, you also don’t need to build any of
the MPI variants here. Just set the WM_MPLIB to the one you provide, e.g.
SYSTEMOPENMPI (and the MPI_ROOT environment variable).

KAHIP, SCOTCH and METIS are graph partitioners, required to decompose
the mesh of a case into several disjunctive pieces for MPI parallel execution.
SCOTCH is automatically provided and build with OpenFOAM. If you want
METIS, too, you must download the sources and unpack them in $WM_THIRD_PARTY_DIR,
and run ./makeMETIS. But if you don’t want or can’t use MPI, the partitioners
are irrelevant, too.

Adios2 is a file format. We never used it.

CGAL is a tool used by foamyQuadMesh for meshing with hexahedral grid cells
(cubes). Usually, snappyHexMesh and cfMesh are more powerful, easier to use,
and don’t require CGAL.

FFTW/PETSC are maybe interesting sometimes if you can use them for the
linear system solvers or pre-conditioners to accelerate the numerical integration.

Whenever successful, the Third-Party packages are installed under
$WM_THIRD_PARTY_DIR/platforms/${WM_ARCH}${WM_COMPILER}

for the configuration independent packages, and under
$WM_THIRD_PARTY_DIR/platforms/${WM_ARCH}${WM_COMPILER}${WM_PRECISION_OPTION}${WM_LABEL_OPTION}

for those packages (e.g. SCOTCH/METIS) that are sensitive to the floating
point precision, and the label size.

This has some advantage if you need two or more different configurations in
parallel. OpenFOAM was designed with maximum flexibility in mind.

Guru’s remark: Sometimes, it is good to know this structure, if you for instance

can build Third-Party packages just with one compiler (e.g. GCC), but want to use

OpenFOAM with another one (e.g. Intel). Then building the Third-Party package

with GCC, and afterwards renaming the directory inside the platforms directory is

quite often successful.

6. Build OpenFOAM. The more or less final step is now to install Open-
FOAM itself. So, go back to the OpenFOAM directory and start the compila-
tion, after a wmRefresh.

> wmRefresh # after paraview built successfully

> foam # is an alias created with sourcing the bashrc

> WM_NCOMPPROCS=4 ./Allwmake

foam is an alias to cd $WM_PROJECT_DIR.

This now takes again some time ... depending on how many parallel processors
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you have available. Just specify them via WM_NCOMPPROCS.

The documentation page says here the following: “Run this command as often
as necessary until no errors appear anymore.” This is it what makes it so hard
to trust OpenFOAM. :(

But what is meant by that is that you can iteratively and incrementally build
the OpenFOAM tools. On errors, your don’t need to start again from the
beginning. Just go on with what you already have. This also means that you
can essentially build only what you really need.

(Often here appears a question like “I got a solver from my supervisor. How can I

build it with OpenFOAM?”. We will handle this in Own/User-provided or external

Solvers and Tools.)

7. Check the Installation. The very last step is to check the installation.
Again, ESI provides a nice script foamInstallationTest. It carefully separates
also critical and non-critical deficiencies. You should at least see something like

Summary

--------------------------------------

Base configuration ok.

Critical systems ok.

Done

at the end. If not, scrutinize the reason for the problem. Not always is it
devastating, and can sometimes even be ignored.

It is also worth to look into $WM_PROJECT_DIR/platforms/${WM_ARCH}${WM_COMPILER}
${WM_PRECISION_OPTION}${WM_LABEL_OPTION}${WM_COMPILE_OPTION}/{bin,lib}.
Here, all the libraries and solvers built can be found be found. On a complete
installation, the number of binaries and libraries should not be too small. At
least, you can check whether your desired solver is available. And if not, check
why not!

A final, really good test is to use one of the tutorial cases – preferably one that
uses your desired solver – which are provided with OpenFOAM. We will exercise
this in the next chapter, and so show by example how an OpenFOAM workflow
may look like.

3.2 Installation of pre-build OpenFOAM on Win-

dows

On the ESI-OpenFOAM web page, there is a menu item “Download”. Clicking
here onWindows, you find some options on how to use OpenFOAM onWindows.
A very fast way to get OpenFOAM into operation is to go to “Native-windows”,
and download the installer.

https://www.openfoam.com/
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This installer does not require any administrative rights. It just unpacks the
MSYS2 environment with the installed OpenFOAM software in a folder of your
choice (you can create one). Only exception is that MSYS2 does not like white
spaces in its path names.

One also needs to install MSMPI. This unfortunately, requires admin rights.
At least the license condition of this product are rather acceptable (you usually
don’t need to pay).

But otherwise, that’s it. A desktop icon is created, which opens a MSYS2 win-
dow, and you can start. We recommend to create a desktop link to the HOME or
OpenFOAM directory of the MSYS2 installation (<MSYS2-install-path>\home\ofuser)
in order to find it easier when opening the cases with ParaView.

For this pre-build OpenFOAM package, the etc/bashrc does not need to be
sourced. Check the installation quickly by executing

> blockMesh -help

The output should not contain error messages.

https://docs.microsoft.com/en-us/message-passing-interface/microsoft-mpi
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Chapter 4

Workflow Example (Motivation)

For a thorough testing, OpenFOAM comes with an extensive tutorial suite.
But already to disillusion you . . . it is not really a guided tour as you may
expect from the name tutorial. It is more a collection of application cases, to
found in $FOAM_TUTORIALS, which should correctly run when the OpenFOAM
installation was successful. They are often small enough for educational and
test purposes. But some can also be used on bigger systems to test parallelism.

> tut # or

> cd $FOAM_TUTORIALS

do actually the same thing1. Switching to the tutorial directory.

It is usually recommended to copy the tutorial cases to a different location

> cp -r $FOAM_TUTORIALS ~/OpenFOAM/

> cd ~/OpenFOAM/tutorials

In this way, you can change anything you want, without losing the original as
reference. For a somewhat more descriptive overview of the available tutorial
cases, please look here or here.

1. A serial Case – icoFoam

icoFoam is an incompressible laminar solver. Its first test case is the lid-driven
cavity2 – very simple and serial (not parallel). For the test, just issue

> cd ~/OpenFOAM/tutorials/incompressible/icoFoam/cavity

> ls cavity

0 constant system

1The alias tut is maybe not everywhere defined.
2From the content of this web page, you may guess why it’s called tutorial. We recommend

you to familiarize with it. We really can’t give an improvement on it. That’s why this present
tutorial is kept so short.

21
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> ./Allrun

> cd cavity

> ls

0 0.1 0.2 0.3 0.4 0.5 constant log.blockMesh log.icoFoam system

Allrun just automates the workflow (and creates automatically log-files for the
solvers used). We could achieve the same as above by executing

> cd ~/OpenFOAM/tutorials/incompressible/icoFoam/cavity/cavity

> blockMesh > log.blockMesh

> icoFoam > log.icoFoam

This may already give you some feeling, how OpenFOAM operates with tools
and solvers in a case directory.

Important Information: All OpenFOAM tools have a -help option for
an overview of command-line options!

2. A parallel Case – simpleFoam

Another case, which however is already a little bit more complicated, and re-
quires MPI for execution, is the motorBike tutorial case.

> cd ~/OpenFOAM/tutorials/incompressible/simpleFoam/motorBike

> ./Allrun

Take care to have at least 6 processors available!

Again ideally, there should be created new folders and log-files, where none of
the latter should contain errors. Even simpler is it to assess problems, when the
case runs only for seconds. The log-files hopefully give you some hint about a
reason.

This seems rather straightforward. And for the tutorial cases, it mostly is. The
real application cases you want to handle later, however, will usually require
more work!



Chapter 5

ParaView ± Pre-/Post-Processing
of OpenFOAM Cases

5.1 Getting started ± Installation and Tutorial

Producing simulation data using solvers is one aspect of CFD simulations. But
pre- and post-processing is by no means less important. Early in the develop-
ment of OpenFOAM, ParaView was selected as the tool of choice. It is even
provided with the Third-Party package.

Nowadays, however, even the OpenFOAM educators discourage the usage of
the self-build Third-Party ParaView – except for the run-time post-processing.
Specifically, because it becomes more and more difficult to correctly build Par-
aView with all its features.

Specifically, there is a much simpler way to deploy ParaView. Provided by the
ParaView developers themselves. Going to the Download page of ParaView,
you can select the ParaView version you want, the operating system (under
the version selection menu on the right), and simply download the desired pre-
build package. Also for Windows, you can find packages that just need to be
unpacked (unzipped), and are ready for use. Just go to the bin directory, and
start paraview.1 Starting it opens the ParaView GUI.

Also on that download page, you find a tutorial (a PDF) under Documentation.
ParaView itself is a very advanced data analysis tool. Teaching it fills complete
courses on its own. We can only highly recommend to pass through the
tutorial at least ones! You will learn the most important essentials of data
analysis and visualization using ParaView! Also Youtube offers a lot of courses,
tutorials, and hands-ons. Please look into the Useful Links and Literature

1The OSMesa build does not contain the ParaView GUI. It is used for off-screen rendering
in HPC, for instance. For Windows, you may start with the non-MPI version. The GUI
should never be started in parallel anyway!

23
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section.

We will show later in this tutorial only the HPC-relevant workflows and config-
urations.

5.2 Opening OpenFOAM Cases in Paraview

The next step is actually now trivial. Go for instance to one of the tutorial cases
(motorBike), and create a file with the ending “.foam”. The name really does
not matter! And the file does not require any content!

> cd ~/OpenFOAM/tutorials/incompressible/simpleFoam/motorBike

> touch bla.foam

Now, from within the ParaView GUI, open this file!

As you are hopefully already a bit familiar with ParaView now, you see that
the Properties tab gives you some options. Among others the Label Size and
the Scalar Size. These must agree with the values of $WM_LABEL_SIZE and
$WM_COMPILER_LIB_ARCH, respectively, for which you compiled OpenFOAM.

5.3 Exercise ± Paraview Visualization motorBike

With some practice and patience, you may reproduce the following picture easily.

As a hint: Extract Block (pressure, p), Iso Volume (turbulent kinetic energy, k),
and Stream Tracer (flow velocity, U magnitude) filters were used, all descending
from the original input data. The turbulent kinetic energy was rendered then
with Volume Rendering.2

2Depending on GPU hardware and driver available, your result might look differently.
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OpenFOAM Workflow in
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For the for the following, we assume that you have a complete installation avail-
able. As already mentioned earlier, the packaged installation usually contains
less, and usually does not allow for user-provided extensions.

Again, we align the explanations here to the ESI OpenFOAM version v2112.
In other distributions it is maybe similar, or maybe not. But understanding at
least one OpenFOAM architecture usually suffices to get on with the others (or
the older versions of ESI OpenFOAM).
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Chapter 6

Structure and Tools of the
OpenFOAM Software

6.1 The essential OpenFOAM Directories

When unpacking the OpenFOAM-*.tgz, you find some files and directories in the
top-level directory. Let us look first on the directories:

applications bin doc etc modules src tutorials wmake

The etc directory is probably the first one gets in contact with. It contains the
bashrc and config.sh/ directory (and those for csh, respectively) for config-
uring the complete OpenFOAM run-time and build environment. Usually, it is
mandatory to source the bashrc before using OpenFOAM – either for running
its tools and solvers, or for build it or external/own components. In order to
make this environment persistent, you can add to you ~/.bashrc file

source ~/OpenFOAM/OpenFOAM-v2112/OpenFOAM-v2112/etc/bashrc

where you must change the path to the bashrc when you have a deviating
OpenFOAM installation location.

On the LRZ clusters, LRZ-provided OpenFOAM environments can be conve-
niently set via the module system:

> module av openfoam

[...]

> module load openfoam/2006-gcc8-impi-i32

for instance (versions and names may change).

The etc directory but also contains a controlDict file, via which you can set
global run-time flags and switches, for instance concerning output verbosity, or

29
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optimization and debugging settings. These can be overwritten by case-local
controlDict files, individually. This global controlDict file can serve as a
reference then.

This optimization and debugging is sort of “OpenFOAM internal”. As you saw
maybe already in the bashrc, the $WM_COMPILE_OPTION environment variable
sets the compile flags for optimization (Opt), debugging (Debug), or profiling
(Prof). We call this external optimization or debugging. Usually, you will
use only the Opt build. And LRZ provides only those. Debug is mostly only
for OpenFOAM developers facing a problem with implementations deep inside
OpenFOAM, where external debuggers are needed. Prof is used if you assume
a severe performance problem that you hope to get analyzed using an external
profiler.

However, for many purposes, the internal optimization and debugging flags are
already sufficient to tune the solvers, and investigate occurring problems, be-
cause most of these problems are produced by the OpenFOAM user him/herself.

The other folders and files are not so interesting most of the time. If they
become, you will know it, and understand them then. For instance, caseDicts
and codeTemplates provide references/templates for dictionaries and solver or
tool codes, respectively.

In short, etc contains central settings, configurations, and information.

The settings in the bashrc concerning compilers and compiler flags used are
mapped to the content of the wmake directory. This directory contains all the
ingredients of OpenFOAM’s build system. Most of the time, you will ignore it
completely. But if you want to extend your compile flags, wmake/rules is some
place to do it centrally.

Sometimes (hopefully rarely), you face some strange errors in association with
the wm-tools themselves (wmake, wdep, ...). In the past at least, OpenFOAM
built them at the first call of Allwmake, when building OpenFOAM. And with
some compiler (or changing the compiler), this went wrong sometimes.

Otherwise, wmake is the central tool of OpenFOAM to build user-provided tools
and solvers.

applications, src, and modules contain the source code of OpenFOAM. src
contains the central OpenFOAM library parts, including the libraries for meshes,
time integration, and parallel execution. applications contains tools, utilities
and solvers, something you probably will mostly work with. These tools actually
are built against the central libraries of src. Therefore, if you want to build
own solvers, the content of applications will probably give you enough of good
examples on how to use the OpenFOAM API.

modules contains the source code of some external utility packages like cfMesh.
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They are not really part of OpenFOAM (in the sense that their developers are
maybe different people than the OpenFOAM developers). But with some agree-
ment, the code was included in OpenFOAM’s source package, which warrants
us at least some sort of good integration, and test.

There is also a bin folder, which contains some tools and utilities. But those
are mostly bash scripts. They don’t need to be built. foamSystemCheck is such
a tool. Other convenience scripts are foamNew. If you want to know what they
do, just look into them with an editor of your choice, and read the description in
their headers. Much of that stuff could most probably be ignored and realized
in a different way. But hey! Why reinventing the wheel?!

tutorials, we had already. The tutorial cases follow several purposes. On the
one hand, they serve as educational and training samples for beginners. Usually,
setting up a new case is probably accomplished by just copying an existing one,
which is then modified and adapted to the own needs. This saves definitely a
lot of time. And you don’t need to memorize all the details that accompany the
creation of a new OpenFOAM case.

On the other hand, as we outlined in the previous part already, the tutorial
cases also serve as test-bed for the OpenFOAM installation itself. If they do
not work, you definitely have a problem in your OpenFOAM installation. (This
does unfortunately not mean that a solution of the problem is easier to achieve.)

Last but not least, doc contains the documentation. This is essentially the Doxy-
gen generated documentation, which you can find also online (see Useful Links
and Literature). As a rule of thumb for help is – help yourself (first). Meant
by that is that OpenFOAM provides the complete code base (open source) with
a lot of inline documentation. And although it is be no means complete, yet,
the efforts of improving this situation are very well visible. For instance, you
can now find for many solvers a human-readable description about which equa-
tions are solved, and which numerical method is used (e.g. incompressible fluid
with PISO). If you want, you are kindly invited to improve or contribute to the
documentation.

In any case, if you know to read C++ code, you have everything in your hands.
No secrets.

6.2 Other relevant Directories

Sometimes, there is an explicit build directory. It is used only for building the
libraries and executables from source out-of-source. It could be removed after
a successful build, in principle, in order to same some space.

The other probably more important directory is platforms. It contains dif-

https://www.openfoam.com/documentation/guides/latest/doc/index.html
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ferent sub-directories for each build-configuration you built OpenFOAM with.
Different compilers, 32/64 bit scalars, 32/64 bit labels, Opt/Debug/Prof, ... .
In each of these folders is a bin and a lib directory, where bin contains the
binary executables (tools, solvers, utilities, ...), and lib the libraries.1 The
bashrc directs PATH and LD_LIBRARY_PATH (among others) to these paths such
that the binaries and libraries are correctly found during run-time.

On a first gaze, it might be a lot of waste of hard-disk space to have many
different installations in parallel. But thinking twice about it, this reveals also
a rather large flexibility for developers. And that’s most probably the reason
for this design. OpenFOAM was never meant as use-only program package.

For the case that you vote for such a flexible development option, we recommend
to generate different bashrc files (with some suitable labeling), one for each
configuration – although the aliases set by it would allow for fast switch between
e.g. SP and DP (single precision = 32 bit scalar, double precision = 64 bit
scalar).2

6.3 User Directories

If you create own libraries and solvers, you usually shouldn’t put them into
OpenFOAM’s source tree. That’s also not necessary. And on central installa-
tions like those of the LRZ clusters even not possible, as you won’t get permis-
sions to create directories and files in the central installation folder.

You can then put your sources in an arbitrary directory of your choice, where you
have permissions, and build the libraries and/or executables from there. Open-
FOAM will place – on successful built – the resulting binaries and libraries in the
directories specified by $FOAM_USER_APPBIN and $FOAM_USER_LIBBIN (and pos-
sibly some others ... . Sigh!), respectively. Go sure that these are set correctly!
E.g. via

> printenv | grep FOAM_USER

Please, also check whether they exist. Actually, most of this should be done
automatically. But you know Murphy’s Laws: “Everything what can go wrong,
will go wrong!” and “Complex system produce complex errors!”. Well, Open-
FOAM is very complex!

Also take care that $FOAM_USER_APPBIN is in the PATH, and $FOAM_USER_LIBBIN

in the LD_LIBRARY_PATH! To check this, just issue

> echo $PATH | grep $FOAM_USER_APPBIN

> echo $LD_LIBRARY_PATH | grep $FOAM_USER_LIBBIN

Adding, if not present, is done by

1Under Windows, that’s a bit different, as Windows addresses library search paths also
with %PATH%.

2Only take care with wmRefresh! It per default reloads a file called bashrc!
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> export PATH=$FOAM_USER_APP:$PATH

> export LD_LIBRARY_PATH=$FOAM_USER_LIBBIN:$LD_LIBRARY_PATH

To make this permanent, just add these lines at the end of OpenFOAM’s bashrc.
But actually, this should not be necessary, as the bashrc already should
do it correctly!
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Chapter 7

OpenFOAM Cases

7.1 The general Workflow Plan

Let us now come to the usual use case of OpenFOAM: Solving some partial
differential equation (PDE) with some initial conditions (IC) and some boundary
conditions (BC).

The steps all the use cases have in common (btw. for any numerical tool that
solves numerically/computationally PDEs) are:

❼ create a geometry; define boundaries and volumes (internal space)1

❼ create initial conditions and boundary conditions

❼ create a mesh for the boundaries and volumes (spatial discretization needs
to be adapted to BC and physical solution)

These steps represent the so-called pre-processing. Some of the steps need to be
repeated several times (like the meshing), until a satisfying result is achieved.
Sometimes even after the following steps maybe.

❼ define and configure the numerical solver scheme; set the time step size;

❼ optional: set write out periods (I/O); set online (“in-situ”) analysis steps,
e.g. for monitoring

❼ run the simulation; monitor the progress

After a successful simulation, you want to analyze/visualize the resulting data.
That’s what is called post-processing.

However, as might have been noticed, the frontiers between these steps become

11D, 2D, 3D, nD volume doesn’t matter. We use the term volume (and also boundary)
here in a more abstract sense. It’s of course relevant for the system of equations you want to
solve which prescribes the space on which it operates.
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more and more fuzzy, specifically the more you approach more elaborate HPC-
scale use cases. For instance, saving all the data for a separate and independent
post-processing might be too expensive in terms of storage. Maybe, it is also not
necessary. When you know already the questions to your numerical simulation
beforehand, you can write out from in-situ analysis steps exactly only those
required data. A better compression you probably can’t get.

But, of course, there is also a trade-off between getting results on success, and
need for information for debugging on failure or problems. We will get back to
that later when looking at the HPC-relevant aspects.

7.2 OpenFOAM Case Workflow Example ± Step-

by-Step with Gmsh

According to the above guideline, we try to fill each of the steps with essence,
and include all relevant aspects helpful for setting up own cases. Please feel free
to consult in parallel also the OpenFOAM User Guide.

1. Preparation

Before you start OpenFOAM, you should have developed already a very
good imagination of what you are going to investigate. This is actually true
for any kind of simulation. Numerical simulation are used if you run out of
better options! Try to collect as many information and questions you can get
beforehand!

❼ Make hand-drawings of your system! Figure out what level of detail you
know already and you really need! (geometry, boundaries, physical quan-
tities, ...)

❼ Pose questions!
What do you want to figure out? Do you have already a guess? Are there
analytical answers already – even if only approximate? Is there experimen-
tal data material? If so, in which form do I want to compare it afterwards?
...
All this will help you later to set up the simulation case, and avoids more
work than necessary.

Example

Let us, for instance, investigate a Kármán vortex sheet. It is a 2D arrangement,
which can be setup as a long channel, and a circular obstacle within the flow.

The fluid can be incompressible. So, we have two (three) velocity components,
�⃗�, and a pressure, 𝑝 (density 𝜌 is assumed constant), meaning we need three
(four) equations – continuity and Navier-Stokes equations. Gravity also does

https://www.openfoam.com/documentation/user-guide
https://en.wikipedia.org/wiki/K\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def  { }\endgroup \relax \let \ignorespaces \relax \accent 19 a\egroup \spacefactor \accent@spacefactor rm\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {a\global \mathchardef \accent@spacefactor \spacefactor }\let \begingroup \def  { }\endgroup \relax \let \ignorespaces \relax \accent 19 a\egroup \spacefactor \accent@spacefactor n_vortex_street
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not matter here.

𝜕𝑡�⃗�+ (�⃗� · ∇)�⃗� = −(1/𝜌)∇𝑝+ (𝜇/𝜌)∇2�⃗� ; ∇ · �⃗� = 0

or, in dimensionless form,

𝜕𝜏 �⃗� + (�⃗� · ∇̃)�⃗� = −∇̃𝑃 + (1/Re)∇̃2�⃗� ; ∇̃ · �⃗� = 0

with the Reynolds number

Re =
𝐿𝜌𝑢∞
𝜇

.

We can assume a uniform constant flow speed 𝑢∞ at the channel inlet (and
actually also at the outlet – but we will use here a different boundary condition).
About the pressure, we can’t say much, yet. Let us see later, what OpenFOAM
offers.

𝐿 is a characteristic length scale. We will take the diameter of the circular
obstacle as the reference length. The vortex sheet appears above about Re ≥
Recrit ≈ 90.

in
le

t
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u

tl
et

channel boundary

obstacle

Figure 7.1: The Kármán case geometry with boundary labels.

So, what about the dimensions of our geometry? Of what width and length
should the channel be with respect to the obstacle diameter? How should the
mesh look like? Which OpenFOAM solver should we use? Which boundary and
initial conditions should we set? Can/should we apply symmetries?

Which solver to use, is maybe simple. Looking at the standard solver page
of ESI OpenFOAM lets us find “Transient solver for incompressible, laminar

https://www.openfoam.com/documentation/user-guide/a-reference/a.1-standard-solvers
https://www.openfoam.com/documentation/user-guide/a-reference/a.1-standard-solvers
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flow of Newtonian fluids”. That’s probably the right one as we expect tran-
sient (time-dependent) behavior. And a turbulence model is not required here,
because the vortex dissipation is realized by transport them out of the volume.
So, we will try icoFoam.

Boundaries are the obstacle itself, the inlet and outlet, and the channel bound-
aries.

❼ On the obstacle, we want no-slip boundary conditions, meaning velocity
is zero. For the pressure, we chose zeroGradient. We will see later,
which more options are available.

❼ At the inlet, the velocity is constant, 𝑢∞, the value serving as control
parameter. We could set the pressure here to zero arbitrarily – we
just need some arbitrary reference pressure, because the Navier-Stokes
equations only depend on the gradient of the pressure. But it is usually
not a good idea to fix velocity and pressure at the same boundary. So,
zeroGradient is probably better.

❼ At the outlet, we chose some outflow boundary condition. zeroGra-
dient for the velocity. And zero pressure.

❼ At the channel boundaries, we only need to keep consistency with the
equations and the other boundary conditions. Periodic or constant
velocity or slip boundary conditions are possible, because this boundary
should actually not matter for the vortex sheet – i.e. this boundary should
be too far away from transient places.

This brings us back to the dimensions of the geometry now. The obstacle
diameter is arbitrarily at 1 LU (length unit).2 We could set the channel width
then to 10 LU, so the channel boundary is about 4.5 LU from the obstacle
boundary away. Before the obstacle, we need some place for arrangement of the
flow pattern. 4.5 LU should be reasonable, again. Behind the obstacle, we want
to see the Kármán vortex sheet. If we set the channel length to 20 LU, and
assume the wave length of the vortex sheet to be also around 1 LU, we should
see about 20 vortexes (depending on the inlet flow speed).

2. Geometry Generation and Meshing

To some extent, this cannot be always split into different steps, as you will see
in a moment.

Actually, there is quite some flexibility in OpenFOAM, to provide geometries
and even complete meshes. We cannot be comprehensive here at all. And
users can even extend these capabilities according to their needs and skills. For
some more extended description of the OpenFOAM meshes, please consult the
OpenFOAM Documentation.

2We will see later that OpenFOAM allows to set some dimension units. So, we could say
1 meter, here.

https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion
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We demonstrate here one way using Gmsh. Gmsh is a free, open source tool for
creating and viewing geometries and meshes, and actually much more (it has
some interface to solve PDEs – so, it is some sort of a concurrent of OpenFOAM).

Gmsh can be simply downloaded from the Gmsh web page for Windows, Linux,
or Mac OS X. The package can be unpacked and the gmsh3 executable simply
started. A window opens, which visualizes the geometry and mesh.

In Linux, it looks rather like this (please check for newer versions – Gmsh is still
actively extended).

> wget https://gmsh.info/bin/Linux/gmsh-4.9.5-Linux64.tgz

> tar xf gmsh-4.9.5-Linux64.tgz

> export PATH=$PATH:$PWD/gmsh-4.9.5-Linux64/bin

> gmsh --help

> gmsh # in order to start the GUI

Gmsh comes with a very well readable ASCII input file format, which is much
easier to handle in an editor. The GUI is usually used only to visualize, or to
support the scripting.

Because the Gmsh documentation is really good, and also nice tutorials are
available on Youtube4, we dispense with a Gmsh usage guide here, and focus on
the OpenFOAM-relevant parts. Let us summarize it the development process
as follows. You first must define points, then lines from these points, and from
the lines (close loops) surfaces. Finally, from the surfaces, volumes are defined.
Units here are taken as meters by OpenFOAM (but later scaling is possible).

For OpenFOAM, we still need to define physical surfaces, and a physical volume.
The surfaces become boundary conditions in OpenFOAM. And the volume –
we call it internal – is filled by the mesh, where OpenFOAM operates on with
its solvers and tools. You can find in the addendum a Gmsh Script of the

KÂarmÂan Vortex Sheet Example. Paste it into a file called karman.geo! Open
this file using Gmsh,

> gmsh karman.geo

and click in the Mesh menu on 3D! The mesh is generated and shown. (See
Figure 7.2)

Afterwards, File −→ Save Mesh saves the mesh to a file called karman.msh.
That is, what OpenFOAM requires.

In order to create an OpenFOAM case from that, copy the cavity tutorial case,

> cp -r $FOAM_TUTORIALS/incompressible/icoFoam/cavity/cavity karman_OF

> cd karman_OF

Copy the karman.msh file into that directory. The content should now look

3In Linux, it is located in the bin directory. In Windows, the gmsh.exe is just in the top-
level directory.

4See, for instance, here and here.

https://gmsh.info/
https://www.youtube.com/watch?v=1A-b84kloFs
https://www.youtube.com/watch?v=aIvDtyAYnI8
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Figure 7.2: The Kármán case mesh in the Gmsh GUI.

similar to

> ls

0 constant karman.msh system

That’s the right moment to somewhat introduce already something of the Open-
FOAM case directory and file schemes.

constant contains all constant parts of the simulation like the geometry de-
scription, the mesh, the physical material properties, etc. system contains the
so called dictionaries, i.e. ASCII files, which govern the run-time behavior of
the solvers and tools. We will look into the details later. The directory 0 con-
tains the initial and boundary conditions of the physical field quantities. For
icoFoam, this is the velocity 𝑈 , and the pressure 𝑝. We will look into these files
later.

For later use, save the constant/transportProperties files somewhere, and
delete the constant directory.

> cp constant/transportProperties .

> rm -rf constant

That’s it. Now we can transform the Gmsh mesh into the OpenFOAM mesh.

> gmshToFoam karman.msh
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The output should be consulted for errors. And also whether the boundaries
have been recognized correctly. Some warning might appear. They should not
be ignored, but are usually not critical.

A visual inspection using ParaView is probably also a good idea. Again, create
a .foam file, and investigate the mesh in ParaView.

OpenFOAM also provides some tool for checking the mesh quality.

> checkMesh

[...]

Checking geometry...

Overall domain bounding box (-5 -5 0) (20 5 0.1)

Mesh has 2 geometric (non-empty/wedge) directions (1 1 0)

Mesh has 2 solution (non-empty) directions (1 1 0)

All edges aligned with or perpendicular to non-empty directions.

Boundary openness (4.80206e-20 -1.67601e-18 -4.10236e-18) OK.

Max cell openness = 2.53896e-16 OK.

Max aspect ratio = 8.19123 OK.

Minimum face area = 2.17705e-05. Maximum face area = 0.068867. Face area magnitudes OK.

Min volume = 2.17705e-06. Max volume = 0.0068867. Total volume = 24.9215. Cell volumes OK.

Mesh non-orthogonality Max: 44.2169 average: 15.1579

Non-orthogonality check OK.

Face pyramids OK.

Max skewness = 2.42319 OK.

Coupled point location match (average 0) OK.
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Mesh OK.

What these mesh quality indicators are and mean, and what values are accept-
able, is business of the finite volume method. However, an “OK.” should signal
that the values for the present mesh are acceptable for OpenFOAM. However,
when you find numerical instabilities in your solution, you should return to
checking the mesh. (This might prove somewhat difficult for adaptive meshes.)

Another tool OpenFOAM provides is renumberMesh. It tries to reshuffle the
mesh cells, in order to reduce the system matrix’s bandwidth, which might
improve the time-to-solution.

> renumberMesh -overwrite

It can be further fine-tuned with a renumberMeshDict inside the system direc-
tory of the case. Consult the mesh/parallel/cavity/system/renumberMeshDict-random
file in the tutorial directory for some overview. The default (no such dictio-
nary) is often but acceptable.

Optimization should be done, when you spare substantially more time for the
simulation than you spend for the optimization.

3. OpenFOAM Case preparation

When the mesh is prepared, one can step to the preparation of the simulation
case itself. At this place, we now need to introduce a bit more about the
OpenFOAM case directory structure.

The constant directory contains, next to the transportProperties file, a
directory polyMesh with some files. These files are ASCII, and you can look
into them.

boundary cellZones faces faceZones neighbour owner

points pointZones

These files contain all the information about the mesh – points, faces, cells,
neighbor-lists etc. – all what is needed for the finite volume method. The
details are usually not too relevant to know – unless you really must. But easier
and less error prone is it to create these files using tools instead of writing or
manipulating them manually.

The boundary file is something you must manipulate once after the mesh import.
It contains next to a default header a dictionary (yes, they call it the same as
the files ... . Sigh!) with the boundaries – the labels are those we gave to them
in the Gmsh file karman.geo.

We must set FrontAndBack to empty. The reason for this is that OpenFOAM
is actually a 3D simulation software. But our case shall run as 2D case. empty
effectively means that no boundary conditions are applied here.
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physicalType patch; is to be commented out. That’s done in a C/C++-
like fashion (// comment until end of line; /* ... */ comment everything in
between).

patch for the other faces is ok. Which other options are available, and explana-
tions, can you find in the OpenFOAM documentation. The final KÂarmÂan con-

stant/polyMesh/boundary can be found in the addendum.

Back in the top-level directory, we need to adapt also the files p and U in
the 0 directory. KÂarmÂan 0/p and KÂarmÂan 0/U can also be found in the ad-
dendum. It is important to label the surfaces correctly as are written in the
constant/polyMesh/boundary file. Otherwise, they are not found. But Open-
FOAM will tell us surely if we do it wrongly.

Information: Here another trick. If you don’t know the labels for dictionary
flags like empty or slip for boundary conditions, just enter something weird
(Hrvoje Jasak calls this the banana trick, meaning that you just enter the
word banana). Running with a sensitive solver/tool then throws an error, also
telling you the possible alternatives. This works for many of the dictionaries
and is usually faster to accomplish than to search in the sources.

Before stating the actual time integration (simulation), we want to mention
some other dictionaries. The three dictionaries controlDict, fvSchemes, and
fvSolution are the most important ones for the moment.

In short, fvSchemes contains the information about the schemes, how the op-
erators of the PDE should be approximated. Usually, you don’t need to touch
it. But if stability problems occur, changing the one or other scheme might be
necessary.

fvSolution contains the information about the iterative matrix solver and pre-
conditioner to be used. Again, you usually do not change anything here unless
you see that your simulation is not converging, or if it is not converging suf-
ficiently fast – and other issues (like bad boundary conditions or bad mesh
quality) are ruled out.

For now, leave fvSchemes and fvSolution from the cavity tutorial case un-
changed.

By far the most important dictionary is the controlDict. Here you control,
when/where the simulation starts, when it ends, how many time steps, the step
size, the I/O options. KÂarmÂan system/controlDict in the addendum shows the
one-pass-through controlDict for the Kármán vortex sheet example.

4. Simulation and Visualization

In an ideal world, you would just issue

https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.2-boundaries
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> icoFoam

and wait until the simulation finishes.

But our world is not perfect, and usually you proceed slightly differently. Specif-
ically, with time series integration, you may not know exactly how long you will
have to run. Or, at which steps you want to write out data. Or whether your
simulation starts at all successfully – until you tried.

So, a good way is to first start the simulation for some integration steps, which
you can observe on the terminal. Check the Courant number (specifically the
maximum one)! Check the errors on the PISO loop! You can always interrupt
with “Ctrl+C”, and scrutinize the current advancement. Often, it is also a good
idea to set writeInterval initially rather small such that the fields are written
to file at each integration step. Then you can investigate with paraview, how
the fields evolve initially.

If you want to continue the simulation from the last time step written, just set

startFrom latestTime;

Of course, it requires that endTime is larger than the latest written output.

If you finished, you should have many number-labeled directories in the top-
level directory, one for each written time-step, containing the field data for each
field (here, 𝑝 and 𝑈). When loading the result into ParaView, you can see the
time evolution when clicking on the play button in the time-series control.

An example snapshot from the simulation looks as follows.

5. Concluding Remarks

Of course, the tutorial cases always work. Other than my own simulation case!
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Well, true! Experience is part of the business. And not all experiences can be
just transferred in a tutorial.

But a thorough theoretical background can be very helpful. Question: What is
the Reynolds-Number of our Kármán vortex sheet example? Answer:

Re =
𝐿𝑢∞
𝜈

=
1𝑚 · 1𝑚/𝑠

0.01𝑚2/𝑠
= 100 > Recrit .

Here, 𝜈 = 𝜇/𝜌 = 0.01𝑚2/𝑠 is the kinematic viscosity from the constant/transportProperties
file. However, that’s not very obvious from the cavity tutorial’s file content.
OpenFOAM comes with often not immediately visible defaults. This here is
one. Fully written, nu should be defined as

nu [ 0 2 -1 0 0 0 0 ] 0.01;

We have seen such dimension scheme already earlier for pressure and velocity
in the 0 directory. The scheme contains in that sequence, mass (kilogram),
length (meter), time (second), temperature (Kelvin), Quantity (mole), current
(ampere), luminous intensity (candela).

Also implicit was here transportModel Newtonian;.

Please keep these things in mind when trying to interpret the results of your
simulation. Align this analysis on your beforehand expectation. Don’t take for
granted that the tool is thinking for you!

Finally, did we do correctly? That’s a tougher question than one might initially
guess. A next step could be to take another or finer mesh, and observer whether
the solution is still the same. That is, for instance, are the field amplitudes still
the same? Is the onset of the instability still at the same time? Are the flow
characteristics still the same? Are the conserved quantities really conserved?

Warning: Even if you convinced yourself that your simulation went correctly,
you only know that you solved a PDE correctly. Whether this equation also
describes the physical system under consideration with sufficient precision is yet
another question. The comparison with experimental results is therefore always
a mandatory validation step. Results of such an analysis can be found on the
verification and validation page of the OpenFOAM documentation.

This completes the example case workflow.

7.3 Import from other Tools ...ToFoam

OpenFOAM comes with quite a list of conversion tools for importing meshes
from other tools. One example we saw already in the previous section for Gmsh.

> ls $FOAM_APPBIN | grep ToFoam

ansysToFoam fluentMeshToFoam netgenNeutralToFoam

https://www.openfoam.com/documentation/guides/latest/doc/guide-verification-validation.html
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ccmToFoam gambitToFoam plot3dToFoam

cfx4ToFoam gmshToFoam smapToFoam

chemkinToFoam ideasUnvToFoam star4ToFoam

datToFoam kivaToFoam tetgenToFoam

fireToFoam mshToFoam vtkUnstructuredToFoam

fluent3DMeshToFoam

What else needs to be done, please take from the OpenFOAM User Guide, or
the documentation. Also for post-processing, conversion back to others tool is
possible. Look for foamTo... tools!

7.4 blockMesh ± OpenFOAM Geometry and Mesh-

ing Tool

OpenFOAM itself has some built-in geometry construction and meshing tool,
which is sometimes astonishingly useful and powerful. It is however a bit
clumsy to use, as absolutely no GUI is given. You just work in an ASCII
file – blockMeshDict (inside the case’s system directory) – and issue from time
to time

> blockMesh

Afterwards, you can investigate the result using ParaView.

The code scheme of the blockMeshDict is described in the OpenFOAM User
Guide. One essentially defines again points (vertices), and from them volumes
(blocks). Edges can be deformed afterwards. Last but not least, one needs to
define the boundary surfaces, which are later used for setting the boundary
conditions.

In the addendum, we provide a KÂarmÂan system/blockMeshDict file, which can
be placed in the Kármán vortex sheet example of the previous section – into
the system directory. The rest being otherwise the same, you should be able to
repeat the simulation then with the following steps.

> rm -rf constant

> blockMesh

> checkMesh

> renumberMesh -overwrite

> icoFoam

For an elaborate overview of the blockMeshDict “language”, please also look
into the tutorial suite into the mesh subdirectory. What you can do with
blockMeshDict, can be guessed maybe by KÂarmÂan system/blockMeshDict ad-

vanced, which does otherwise the same as the previous blockMeshDict.

Information: Also for the other available meshers of OpenFOAM, look into
the tutorial suite!

https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.5-mesh-conversion
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
https://www.openfoam.com/documentation/user-guide/4-mesh-generation-and-conversion/4.3-mesh-generation-with-the-blockmesh-utility
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7.5 Exercise ± KÂarmÂan Vortex Sheet with blockMesh-

generated Mesh

The blockMeshDict allows some variants. For the flow around a cylinder, you
can also adapt the blockMeshDict from the OpenFOAM User Guide. Try to
make it comparable in geometry and mesh to what we already provided here!
For some more extended analysis, please consider this presentation, and try to
repeat this analysis! Much of that analysis can be done in ParaView such as
determining the drag coefficient.

Also try now different solvers like simpleFoam or pimpleFoam! In order to do
this, look into the tutorial cases, and the respective necessary dictionaries. Copy
and modify them for your needs, and let them run. OpenFOAM will tell you if
something is missing or wrong.

7.6 STL Files into OpenFOAM ± snappyHexMesh,

cfMesh

Of course, OpenFOAM is a 3D PDE solving system. Even if we illustrated the
workflow with 2D examples, the more interesting use cases are surely in 3D.
Usually, you will have probably some highly complex geometrical structures,
where a fluid is flowing through or around.

Gmsh as an external meshing tool is surely viable, as others are, as long as there
is some ...ToFoam tool available. But blockMesh is not very useful in such
cases. Still, OpenFOAM offers also some more advanced mesh generation tools.
snappyHexMesh5 and cfMesh, where the latter in turn is a collection of several
mesh generation tools. These tools can generate hexahedral (cartesianMesh,
cartesian2DMesh), tetrahedral (tetMesh) or even polyhedral (pMesh) meshes.

These tools allow for region-wise automatic mesh refinement, and specifically a
good handling of boundary layer meshes relevant for CFD applications.6 They
have quite some amount of tuning options, and can be executed also in parallel.

For both there are very good user guides (see Useful Links and Literature
under the OpenFOAM section).

Stays the question, how to provide the geometry? Both tools allow for STL
files. Such files can be created with any CAD software. But if you want to stay
on the non-commercial trip, we can recommend FreeCAD (docu) and Blender
(docu), amongst others.7

5There are foamyHexMesh and foamyQuadMesh available, too, which for some cases are cer-
tainly useful.

6OpenFOAM also has the tools refineHexMesh, refinementLevel, refineMesh, and
refineWallLayer.

7Both are free and available for the major OSs, and usually do not require that you build
them from source, or install them as administrator.

https://www.openfoam.com/documentation/tutorial-guide/2-incompressible-flow/2.2-flow-around-a-cylinder
http://www.wolfdynamics.com/wiki/tut_2D_cylinder.pdf
https://en.wikipedia.org/wiki/STL_(file_format)
https://en.wikipedia.org/wiki/STL_(file_format)
https://www.freecadweb.org/
https://wiki.freecad.org/Getting_started
https://www.blender.org/
https://docs.blender.org/manual/en/latest/modeling/index.html
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There are lot of nice tutorials on Youtube, and we recommend to consult them
(just look for “OpenFOAM FreeCAD”, for instance, or “blender NACA airfoil”,
and the like).

For handling the STL geometry (move, rotate, scale, ...), OpenFOAM offers the
surfaceTransformPoints tool. And certainly, there is more.

This section is more a perspective and a hint where to find, in order to illustrate
the spirit behind OpenFOAM, instead to describe really how to do it. You can
easily extend your OpenFOAM workflow with other – mostly free – tools, to
be as productive as you want to be. It is of course in your responsibility to use
these tools correctly and efficiently. So, for reasonable CFD results, you should
use well and finely grained geometries, for instance, in order not to generate
(nonphysical) artifacts.

7.7 Reasonable Practice ± Version Control and

Backup

As your cases develop and evolve, you make often changes, where you later still
need to know that you did them. And why. Here, a version control system
like git or svn is a valuable help, and often not difficult to use.8 Just add your
scripts and dictionaries to the version control. That’s it! Not much, but with a
tremendous advantages.

The results (of the simulation) are usually not put under version control. In
worst cases, you can reproduce any result of a simulation whenever you need it.

A second issue is backup. Surely, you don’t want to lose all your precious work
just because a hard disk gives up operation. There are really many possibilities
in the 21st century to secure the own work. Cloud services are viable as well as
local USB disks. You don’t want that others can access your work? No problem!
Compress and encrypt your backups. Just take care not to lose the password!

What should be backed up? Well, everything under the version control is a good
beginning. You can also backup the results – after some moderate compression.
Here, you must decide, what’s more expensive: The storage space consumed, or
the time to repeat the simulations? But please, be realistic!!

8git has the advantage that you can use it without a server, and no need to push to github
or so.

https://rogerdudler.github.io/git-guide/


Chapter 8

Own/User-provided or external
Solvers and Tools

This section requires you to have a full-fledged OpenFOAM (with all sources
and headers) at hand. The run-time alone is not sufficient! Furthermore, some
aspects are very C++-loaded. So, without this knowledge, some difficulties to
understand might occur.

Still, we won’t introduce here the OpenFOAM API (which is actually a topic of
a complete course on its own; furthermore, the API changes still quite substan-
tially, what makes it difficult to keep pace when preparing a more sustainable
tutorial).

1. Preparation

We would like to solve the Swift-Hohenberg Equation, which represents a model
equation for convection instabilities in thin liquid layers, heated from below (cf.
Marangoni effect). We use the following form of the equation,

𝜕𝜓

𝜕𝑡
= [𝜀− (1−∆)2]𝜓 +𝐴𝜓2 − 𝜓3 ,

where

❼ 𝜓 is a real-valued function of time 𝑡 and 2D space coordinates (𝑥, 𝑦)

❼ 𝜀 is a control parameter; instability of solution 𝜓 = 0 occurs for 𝜀 > 0

❼ 𝐴 is another parameter, which determines, whether roles (𝐴 = 0) or hexag-
onal convection patterns (e.g. 𝐴 = 0.5) occur (𝐴 < 1); (cf. Figure 8.1)

❼ ∆ is the 2D Laplacian,
(︁

𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2

)︁

For simplicity, we choose 𝜓 = 0 as initial condition (with some noise to accel-
erate the occurrence of the instability). Further, we choose periodic boundary
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https://en.wikipedia.org/wiki/Swift\OT1\textendash Hohenberg_equation
https://en.wikipedia.org/wiki/Marangoni_effect
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Figure 8.1: Solutions of the Swift-Hohenberg equation. Left: Roles (𝜀 =
0.1, 𝐴 = 0.0); Right:Hexagons: (𝜀 = 0.1, 𝐴 = 0.5). Array size is 256 × 256,
with ∆𝑥 = 0.5 length units (so, total area is 128 × 128 unit length squared);
critical wavelength is 2𝜋 per unit length (i.e. 𝑘cr = 1; so around 20 roles or
hexagons per 128 unit length should appear).

conditions, i.e. 𝜓(𝑥 + 𝐿, 𝑦) = 𝜓(𝑥, 𝑦) for some system size 𝐿. And so also in
𝑦-direction.

From a so-called linear stability analysis, one can determine that the homoge-
neous stationary solution 𝜓 = 0 becomes unstable if 𝜀 > 0. For 𝐴 = 0 (or at
least rather small), roles become the stable configuration. If 𝐴 is sufficiently
large, hexagons become the dominant structure.

The characteristic wave number is equal to the critical one, and here by con-
struction equal to one unit length (𝜀− (𝑘cr +∆)2; 𝑘cr = 1). The corresponding
wavelength is 𝜆cr = 2𝜋/𝑘cr = 2𝜋.

2. Creating the OpenFOAM Solver

Although you will rarely split the solver development and the case setup so
cleanly as we show here, for brevity of the representation it is the most suitable
approach.

In a first step, choose one of the existing solvers that most closely matches
your needs. Rewriting is easier than development completely from scratch. The
Swift-Hohenberg equation is a non-linear scalar transport equation. So, we reuse
scalarTransportFoam here. Somewhere in your HOME directory, just copy the
solver source to your location, and start some modifications.

> cp -r $FOAM_APP/solvers/basic/scalarTransportFoam mySolver

> cd mySolver/

> mv scalarTransportFoam.C mySolver.C

> sed -i 's/scalarTransportFoam/mySolver/g' Make/files

https://en.wikipedia.org/wiki/Stability_theory
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> sed -i 's/FOAM_APPBIN/FOAM_USER_APPBIN/g' Make/files

# also for FOAM_LIBBIN -> FOAM_USER_LIBBIN if necessary

> wmake

We call our solver here mySolver. You can surely use more fantasy!

After calling wmake, this new solver should compile without errors, and finally be
placed into $FOAM_USER_APPBIN. If errors occur, read them carefully, and figure
out by what they are caused. C++ knowledge and experience is inevitable here.

Once successfully done, you can start to modify the solver’s source code. We
start with the Swift-Hohenberg: createFields.H. For simplicity, we marked ev-
erything red, what we changed.1 That’s indeed not too much. Actually, only
three lines. The rest is just output of information. And most of what we
changed, could essentially be seen from the original.

The only thing requiring an explanation might be dimensionSet(0,0,0,0,0,0,0)
for 𝜀 and 𝐴. In principle, we could avoid to set the dimensions here, and do it
later in the transportProperties dictionary. But enforcing consistency here
makes the solver fail early if something is wrong.

The question might appear why we left the velocity still in, as it is not actually
necessary. To be honest, we simply don’t know exactly, where everywhere in the
included headers the velocity is required. Just commenting out the definition
of 𝑈 resulted in many errors, what became even worse, when trying to remove
also the header includes which threw the errors. So, we finally decided to leave
𝑈 in, as was the case for the scalarTransportFoam, where it is also just an in-
active component not being required to be solved for (no equation is there for 𝑈).

Next, we modify the Swift-Hohenberg: mySolver.C. Again, we did not change
too much.2 Unfortunately, we could not figure out, how to use completely
dimensionless equations in OpenFOAM. Therefore, we needed to introduce some
dimensionedScalars, which compensate for the dimension of fvm::ddt and
fvc::laplacian. (Well, we didn’t claim that OpenFOAM is the best tool for
solving the Swift-Hohenberg equation, after all.)

This compiled successfully, and is now ready for the use. But the last judge will
be the test.

Remark: Please consult the book of [Moukalled] (see OpenFOAM in the adden-
dum)! It contains some quite readable introduction also into the OpenFOAM
API ... even though the API is changing, it is really helpful to get a more
general overview.

1For the API documentation, please consult the Extended Source Guide! Use the search
capabilities there!

2We must admit that we are not so familiar with the OpenFOAM API, either. So, there is
maybe a more clever way to exploit the implicit Foam::fvm:: namespace, in order to implement
a more stable solver. The Foam::fvc:: namespace contains explicit representations, as far as
we know. Still, we got it working.

https://www.openfoam.com/documentation/guides/latest/doc/
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3. Setting up the OpenFOAM Test Case

Again, we need to define the geometry and the boundary conditions, first. We
use for simplicity again blockMesh. Please, consider the Swift-Hohenberg: sys-

tem/blockMeshDict. The geometry is quite straightforward in this case. The
only new thing are the periodic boundary conditions, which are called cyclic

in OpenFOAM, for a simple reason – they are more general than just periodic
boundaries. All they require then is the neighbor boundary, and the specifica-
tion of the face itself. So, no further magic here.

> blockMesh

from the top-level directory creates then the constant folder with the polyMesh
subdirectory, which again contains the mesh description.

Now, we can create also the Swift-Hohenberg: constant/transportProperties. It
only contains the values for 𝜀 and 𝐴. You can also place some dimension specifier
for them. If you do it wrong, meaning not being dimensionless, mySolver will
fail with a telling error message.

The next step is to set the initial fields. For the velocity, which in fact requires
some syntactically correct 0/U file, you can simply set a uniform zero field
otherwise. So, Swift-Hohenberg: 0/U will do.

The initialization of 𝜓 is however crucial. Actually, we would like to have
some random value here, uniformly distributed in a small interval around zero.
OpenFOAM’s capabilities have matured to accomplish this in a very elegant
way using codeStream. Without further ado, this inline C++ coding creates
dynamically loadable libraries, which are compiled, linked and executed at run-
time. Please look into Swift-Hohenberg: 0/psi. That’s essentially the same
C++ you need to write solvers, tools, and utilities in OpenFOAM.

For many other cases, there are already tools like setFields, swak4foam
(when you still get it compiled with your OpenFOAM version), etc. With
setFields, you can even use STL files to define geometric regions. But code-
Stream appears very convenient, once you understand it.

We are not ready, yet. We need a controlDict, a fvSchemes and a fvSolution
file. These we can lend from $FOAM_TUTORIALS/basic/scalarTransportFoam/pitzDaily/system,
and just modify what’s needed. The end time, and time step, as well as the
write intervals need to be tested out in the Swift-Hohenberg: system/control-

Dict. Too large a time-step will make the simulation diverge, as we have quite a
bit explicit parts in the discretization. Further more, the spatial discretization
is quite fine. So, the time-step needs to be small, too. How long will we need to
run the simulation? As we use a dimensionless equation, we can say that there
should happen something within one time-unit. Indeed that’s what we observe.
But the real structure formation saturates around 50 time units, or a bit more.
Finally, we must try.

http://www.wolfdynamics.com/wiki/prog_codestreamINIT.pdf
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However, just starting the mySolver now results in some other error. It will
tell us that some laplacian scheme is missing. The implementation of the
Swift-Hohenberg equation contains some spatial derivatives, where OpenFOAM
not immediately knows what to do with them. Just modify the fvSchemes

and fvSolution files as shown under Swift-Hohenberg: system/fvSchemes and

system/fvSolution.

So, surely not all schemes are really required. But for laziness we let them in.
For the solutions, the default pre-conditioner was PILU. As it is not symmetric,
OpenFOAM complains. But it gives you also a list of available pre-conditioners.
That’s exactly the banana trick, we described above. If you want to use GAMG,
you are also asked for a smoother – please go and find one! But DIC and FDIC

work without further requirements.

4. Final Remarks

This section should illustrate, how one could in principle extend OpenFOAM
with further tools and solvers, and how to approach and analyze the cases. Step-
by-step. However, usually it will not go through so smoothly and systematically
as it might appear here. Still, the systematic approach appears us the most
promising one.

In any case, one can gain a lot of insight into the functionality and setup of
OpenFOAM. And it might already now make you feel the flexibility OpenFOAM
offers, but definitely its complexity.

Please consult the books of [Saad] and [Moukalled], which we placed in this
tutorial’s literature list.

Last but not least, what is true for your cases, also holds true especially for your
solvers and tools! Version control and backup! Developing solvers is software
development. Maybe others want to use your work, too. Thus, documentation
is inevitable. But even more importantly so for yourself.
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Part III

HPC Topics
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If you are able to understand that a solution is the one of your
problem, then you probably understand your problem well enough, and

may have found this solution also by yourself.

Ce veut dire ... If you never touch the limits of a computer, your program never
crashed, your hard-disk never ran full, you may not yet understand this part
– the solutions that are offered here. That’s quite ok from our side. You can
come back here, and consult these chapters, when you are ready.
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Chapter 9

Parallel OpenFOAM

9.1 When to use Parallelism?

There are mostly two reasons for going parallel:

1. the (projected) case run-time is too long (aka impatience)

2. the (projected or experienced) memory consumption is too large for the
current system

OpenFOAM is (currently still) an MPI-only code, which means, that you can
only decompose a single case into several domains, which independently solve
the equations, and communicate the information on the boundary fluxes to the
next neighbors via MPI (Message Passing Interface).

This imposes some restrictions on the capabilities of system provided paral-
lelism. Modern systems may have wide vector registers, where the same opera-
tion can be executed in parallel on several input data. Except for KNL (Intel
Knights Landing), OpenFOAM seems not to support wider vector registers, yet.
At least using them appeared not to have a speed advantage.

Modern processors have several physical CPU cores. As they share common
memory, communication could happen through this faster memory communica-
tion. This is usually accomplished via threading (phtreads, OpenMP, TBB, ...).
OpenFOAM seems not officially to support this either, although single efforts
can be found on the internet.

However, with several MPI processes (ranks) spawned, a multi-CPU processor
can be utilized for OpenFOAM in parallel. One needs to care for placing the
different MPI ranks on different physical CPU cores, as overlapping processes
on a single core usually burdens heavily the performance.

MPI has a big advantage in comparison to thread (shared memory) parallelism.
One can easily spawn the MPI processes also across several (multi-CPU pro-
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cessor) nodes, which are connected via some (high-speed) network. However,
the communication might become some sort of a bottleneck for performance.
So, clever domain decomposition strategies must be used, which minimize the
cross-domain communication. OpenFOAM offers several options to accomplish
this.

Using several nodes for parallelizing OpenFOAM also offers a second advantage.
Each node has presumably its own piece of memory. So, using two nodes with
the same amount of resources doubles automatically the amount of CPUs and
memory available.

But rarely is the amount of memory per CPU core so ideal that you can exploit
both. In most cases, you will be able to use all CPUs, but only small parts of
the total memory. Here, you even might want to press as much data into the
cache hierarchy as possible, as caches are much faster than the main memory
(commonly known as RAM). But there might also be cases, where memory per
CPU core is the limiting factor. In an extreme case, you may only use one CPU
and all the memory of a node.

OpenFOAM seems to be very well behaved, such that you can freely find the
optimum ratio of CPUs and memory per node for your simulation. Still, there
are some other issues related to parallelism in OpenFOAM – specifically on HPC
systems –, we will discuss below.

9.2 Basic Case Setup and Workflow for parallel

Runs

The general workflow in OpenFOAM is to first decompose the geometry with
decomposePar. It is controlled via system/decomposeParDict. After the de-
composition, you have several processor* directories in your top-level case
directory. One for each MPI rank (or better, one for each rank that does I/O;
see below).

How the decomposition looks like can be investigated with ParaView again. One
can open the geometry of each processor directory, after creating a .foam file
therein e.g. via

> for i in processor*; do touch $i/bla.foam; done

A less painful way is however to use the -cellDist option of decomposePar. It
creates a cellDist inside the 0 folder, which can be used in ParaView to color
the different domains.

The solver then operates in parallel on these directories. Once the simulation
is done, reconstructPar recombines the case output split into and distributed
over the processor directories into top-level directories – one for each written
time-step.
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In the simplest case, your workflow looks like this

> decomposePar -cellDist

> mpiexec -n 4 icoFoam -parallel

> reconstructPar

where icoFoam can be replaced by other solvers. Those, which allow for the
-parallel option – check the command-line options with -help! Our self-
written solver of the previous part also works in parallel. That’s some of the
magic of OpenFOAM.

So simple that may sound, and in part actually is, there are also intrica-
cies. First of all, you must explicitly specify the number of MPI ranks in the
decomposeParDict, e.g. as

numberOfSubdomains 4;

Starting the mpiexec/mpirun with an inconsistent number of MPI ranks (option
-n <no of ranks>) results in an error. Similarly, -parallel forgotten results
probably in a mess. In an ideal case, you get some error. But mostly, there just
run several serial solver instances simultaneously, which causes possibly some
chaos at I/O.

To make the workflow a bit less error-prone, OpenFOAM comes with some
bash-wrapping support you can find in the Allrun scripts of the tutorial cases.

OpenFOAM knows several domain decomposition methods. The simplest is to
write

method hierarchical;

into the decomposeParDict, which requires the specification of the domains in
𝑥, 𝑦, and 𝑧 direction

coeffs {n (2 2 1);}

Their product needs to match the numberOfSubdomains.

Other decomposition methods are metis, kahip, and scotch, and others, of which
scotch comes usually per default. For the other libraries, one needs to install
them separately first, and re-run Allwmake for OpenFOAM again, such that the
respective libraries are built.

For usage, just place for instance the following into the decomposeParDict

additionally to the numberOfSubdomains,

method scotch;

For more information on details, please consult the OpenFOAM documentation.

https://www.openfoam.com/documentation/guides/latest/doc/openfoam-guide-parallel.html
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decomposePar is intrinsically serial, as reconstructPar is. However, both have
an option -time <range>, which can be used to execute the decomposition or
reconstruction on individual time steps. Because this can be done independently,
this offers some path to parallelism (e.g. GNU parallel, or MPI parallel).

Btw. also the meshing can be accomplished in parallel. Check reconstructParMesh!

9.3 Exercise ± MPI parallel Workflow

Use one of the previous example cases, or one tutorial case (motorBike or
windAroundBuildings in $FOAM_TUTORIALS/incompressible/simpleFoam/ should
be large enough), and exercise the workflow. Also investigate the results in Par-
aView, for both decomposed and reconstructed cases.

9.4 MPI Scaling ± How many parallel Ranks should

I use?

1. Theoretical Considerations

The answer to this question depends, of course, somewhat on your bottleneck,
and the intended workflow. For the classical monolithic OpenFOAM case, you
can consider the following.

Amdahl’s Law states that you can speedup a program, which requires on one
CPU a run-time 𝑇1 (e.g. seconds), by a factor of

𝑆𝑛 =
𝑇1
𝑇𝑛

=
1

(1− 𝑝) + 𝑝/𝑛
,

where 𝑇𝑛 is the run-time of the same program, but running parallel on 𝑛 CPUs.
𝑝 is the fraction of the serial program run-time that can be parallelized (1 − 𝑝
is thus the inherently serial part of the program).

In order to know how fast a program runs on 𝑛 CPUs, we only need the serial
run-time and the speedup,

𝑇𝑛 = 𝑇1/𝑆𝑛 = 𝑇1(1− 𝑝+ 𝑝/𝑛) .

In an ideal case, 𝑝 is one (perfect parallelizability). In this case, one could reduce
the run-time to arbitrary small values by just increasing the used amount of
CPUs. It is clear that this is unrealistic. But we can compare the actual run-
time with this ideal run-time, and define a parallel efficiency,

𝜀𝑛 =
𝑇1/𝑛

𝑇𝑛
[𝑛(1− 𝑝) + 𝑝]

−1
,

and say, further scaling makes sense (brings a speedup) only as long as the
parallel efficiency is larger than say 70%.

https://www.gnu.org/software/parallel/
https://en.wikipedia.org/wiki/Amdahl%27s_law
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2. How does it look in Practice?

Considering our rather small Kármán vortex sheet test case of the previous
part, we find the following run-times for 10 time-steps and with scotch domain
decomposed (see Table 9.1).

𝑛 = 1 2 4 8 16
𝑇𝑛 = 118 𝑠 66 𝑠 37 𝑠 24 𝑠 24 𝑠

𝑇1/𝑛 = 118 𝑠 59 𝑠 29.5 𝑠 14.75 𝑠 7.375 𝑠
𝜀𝑛 = 100% 89.4% 79.7% 61.5% 30.7%

Table 9.1: Kármán vortex sheet scaling data with, 10 time-steps, using scotch
for domain decomposition.

Effectively, we see already no speedup anymore with more than 8 MPI ranks.
This case is too small (has too few mesh cells – please look at the checkMesh

output), such that at this level of parallelism, no speed can be gained anymore,
and bottlenecks become dominant. More than about 5 or 6 MPI ranks are not
reasonable.
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Figure 9.1: Kármán vortex sheet scaling plot – parallel efficiency as function of
the number of MPI ranks used.
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3. What if that’s still not enough, and the simulation would
still take intolerably long?

Every time you pose this question, you should start some optimization consid-
erations. MPI parallelism is only one solution, however. We mentioned already
earlier that vectorization would be another solution. Sure! If a single compu-
tation can work with 4 or 8 numbers simultaneously instead of just with one, a
single time-step would then take only 25% or less.

OpenFOAM seems not very amenable to vectorization, unfortunately. But you
have more tuning screws available. One was renumberMesh. And also the mesh
quality can be checked again. If the corrections like those for non-orthogonality
take some substantial time, a mesh with orthogonal mesh cells might largely
reduce this.

One can also tune the iterative solver settings, change the pre-conditioner, etc.
Usually, these settings are quite reasonable for the tutorial cases. Yet, for your
case maybe not!

Something, maybe too obvious to be mentioned here, is that you may also
reconsider the solver used. Maybe another does the same job for your system
and questions under consideration, but with less effort. This may even include
the use of simplified equations with approximations.

More optimization possibilities are thinkable. Be creative!

Finally, sometimes, we simply must admit that a further optimization is (cur-
rently) not possible. In such cases, one simply needs to look for different ap-
proaches.

4. Preparation of large Cases

With the meshers today, it is so easy to just make the mesh finer – and play in
the league of HPC.

Caution: Never assume that a larger, mesh-refined case on a HPC systems
runs with the same speed as your smaller case on your workstation!1 Always
measure and assess!

❼ Start with a smaller case: Complete geometry, but coarser mesh.2 Check
the main memory consumption (\time -v ... can be helpful here). De-
termine the run-time of some time-steps. Try low MPI parallelism (2
would be fine, if it works), and observe whether parallelism helps at all.

❼ Increase the mesh by a factor of two, and repeat the steps of above. Are

1This might be especially true as HPC processors have usually a smaller clock frequency
than desktop CPUs.

2If this does not fit into a single node, take more nodes until it fits, and your program does
not run into a out-of-memory. Usually, you can estimate (about number of fields times number

of mesh cells times bytes per floating point value) the minimum required size. Additional stuff
might increase this. Measure how much more!
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the results scaling? For instance, is main memory also just doubled? Is
the run-time also just doubled? Does parallelism still reduce the run-time
proportionally? With the same efficiency as for the case with a smaller
mesh?

❼ Also check the I/O. How many data you need to write out. Is enough
disk space available? Or do I need to do in-situ post-processing in order
to reduce the file-system burden (see below)?

In this way, you slowly and systematically approach the unknown regions (case
and parallelism size), and gain the necessary experience to handle larger cases.
And you learn the possibly unexpectedly occurring bottlenecks and show-stopper,
with some chance to remedy. With the impatient path of scaling immediately
without this investigation, debugging might be impossible, and in many cases at
least very frustrating. The more information you have, the better your chance
for success.
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Chapter 10

Advanced File IO

This and the following section emphasize the peculiarities of HPC clusters. To
have access to the one or the other is therefore helpful and necessary to follow the
example workflows. We also present here some tools, which are mostly available
on such clusters in the one or the other form. To install them on laptops or
smaller clusters is usually not so useful (meaning that it is usually not worth
the effort), but surely also possible.

This section is not completely focused on OpenFOAM but can be useful also
for other HPC software packages. Still, it is very relevant for large scale Open-
FOAM.

10.1 GPFS and Workflow Proposals

Many HPC clusters have some high-speed, large-volume file-system like GPFS,
which for I/O performance reasons have a rather large block size, e.g. of 8 or
16 MByte. OpenFOAM notoriously produces a lot of small files – for each I/O
rank for each time-step for each field written out – which are much smaller than
this block size, and so rendering the storage on GPFS quite inefficient. Even
more problematic for large cases is that each file and directory consumes inodes
(file system metadata), the number of which is usually also limited.

We are talking here about case sizes consuming hundreds of millions and more
inodes! In such cases, this means, reducing the amount of the OpenFOAM
output files must actively be managed!

The reconstruction of the case might already be helpful. At least the MPI rank
multiplicity is reduced. So, maybe does the collated I/O (see below).

For an overview, you can use the mpifileutils.

> mpiexec -n 10 dwalk -l -v <path to OpenFOAM case directory>

[...]

67

https://mpifileutils.readthedocs.io/
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[2022-03-10T08:44:04] Directories: 163457834

[2022-03-10T08:44:04] Files: 36893459343

[2022-03-10T08:44:04] Links: 134534

Leaving out the option -l, you also get a statement about the amount of data,
and the mean size per file. But it will take much longer to run on large file-sets.

But the mpifileutils can do quite a bit more. Using dtar and dbz2, it is quite
easily possible to bundle and compress large amounts of files and directories
into a single file.

> mpiexec -n 10 dtar -cf archive.tar <directory>

> mpiexec -n 10 dbz2 --compress archive.tar

creates a file called archive.tar.dbz2. You can look into it via

> tar tf archive.tar.dbz2

or

> tar tf archive.tar.dbz2 | less # a pager might help

and also extract some specific folders or sub-directories (e.g. for post-processing)

> tar xf archive.tar.dbz2 --wildcards "example_case/processor*/200"

This workflow is maybe also reasonable for creating archives, which shall be
stored on tape for later revisions of analyses.

10.2 Parallel Reconstruction

We already mentioned that reconstructPar is actually quite serial. However,
many OpenFOAM cases produce a lot of time-step output folders, which can
be reconstructed independently of each other. That is, we can do this more or
less in parallel.1

In order to parallel-ize the reconstructPar step on a HPC Slurm cluster, the
following script might be illustrative (for the principle – there is always more
than just one possibility to realize a workflow).

#!/bin/bash

#SBATCH HEADER

# load OpenFOAM environment

cat > reconstruct_job.sh << EOT

#!/bin/bash

REC_STEPS="\$(cd processor0; echo [0-9]* | sed 's/^0 //' | xargs -n \

1With some clever implementation, you could do this reconstruction even in parallel to the
ongoing simulation.
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$SLURM_NTASKS echo | sed -n ''\$((\$PMI_RANK+1))''p | tr ' ' ',')"

echo "reconstruct: \$REC_STEPS"

reconstructPar -time "\$REC_STEPS"

EOT

chmod u+x reconstruct_job.sh

mpiexec -l -n $SLURM_NTASKS ./reconstruct_job.sh

$SLURM_NTASKS is defined by Slurm (salloc, sbatch). For other schedulers,
please consult their docu for its replacement. $PMI_RANK is defined by Intel
MPI (mpiexec), and contains the rank ID. For Slurm’s srun, this variable is
called $SLURM_PROCID.

$REC_STEPS essentially just contains a comma separated list of time-step labels,
which are present in processor0. The 0 time-step is excluded (what does not
matter much).

10.3 Parallel Decomposition and Reconstruction

Since quite a while, there exist the new tool redistributePar. It is com-
pletely parallel, and supposed to replace decompsePar, reconstructPar, and
reconstructParMesh. This makes the last section obsolete then.

For decomposing, just the command-line flag -decompose in required. Also a
decomposeParDict is required, and mpiexec must be called with as many MPI
ranks as are numberOfSubdomains specified in the dictionary. As is can only
run in parallel, also the option -parallel needs to be added . . . somewhat
redundantly.

Reconstruction is accomplished by replacing -decompose by -reconstruct.

There are more options e.g. for specifying the time steps to be reconstructed.
As this is again feasible in an independent manner, one can parallelize according
to the previous section, possibly.

10.4 Binary, Compressed, and Collated I/O

A large part of documentation can be found on the OpenFOAM docu page
again.

OpenFOAM allows for quite a flexible file output handling. The output data
can be ascii – and here then also compressed (gzip – writeCompression on;)
or uncompressed (writeCompression off;) – or binary (uncompressed only)
data. This is specified in writeFormat. For ascii, you can also specify a
writePrecision, what for binary is irrelevant.

https://www.openfoam.com/documentation/user-guide/6-solving/6.1-time-and-data-inputoutput-control
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In all those cases, there is no change on how to analyze the data using Par-
aView – also for decomposed cases.

Since OpenFOAM v1712 (OpenFOAM-6), a new feature was added, which is
supposed to alleviate the GPFS issues mentioned above. But it also accounts for
the multi-core structure of modern compute nodes, where I/O per node can be
optimized when bundled and buffered node-locally (exploiting also the higher
speed of on-node MPI communication). Exactly what we need for HPC! We
talk about collated I/O.

The workflow is as follows.

> export FOAM_IORANKS="(0 4)" # mandatory here

> decomposePar -fileHandler collated

> mpiexec -n 8 Solver -parallel -fileHandler collated

> reconstructPar

$FOAM_IORANKS must contain a OpenFOAM list with the MPI ranks that are
supposed to do I/O – here rank 0 and 4. Usually, you would use here the rank
with the smallest ID on each node in the job. For a 100 node job with 50 CPU
cores per node, this can reduce the number of parallel write-out directories (and
proportionally also files) from 5000 to 100.

decomposePar creates bundled directories with for example the name scheme
of processors8_0-3 – meaning 8 MPI ranks, and ranks 0 until 3 write herein
into the files together.

Also the solver requires to be called with the -fileHandler collated option.
Alternatively, if you don’t want the command-line flags, you can simply add the
following to the controlDict.

OptimisationSwitches {

fileHandler collated;

maxThreadFileBufferSize 2e9;

maxMasterFileBufferSize 2e9;

}

For more information, please consult the OpenFOAM documentation.

As an exercise, use one of the tutorial cases, which can be parallelized (in-
compressible → simpleFoam → motorBike is large enough), and play with the
settings!

10.5 Check-Pointing

For larger cases, when running on many nodes, it might become relevant that
node and system failures occur. This usually aborts a running job, where one

https://www.openfoam.com/news/main-news/openfoam-v1712/parallel
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loses all computations done since the last write. That is, CPU budget is wasted
here. One hour on 1000 nodes with each about 50 CPU cores, for instance,
this makes already 50000 CPU-hour. For e.g. 2.5 cents per CPU-hour, this is
already 1250 ➾. So, CPU budget wasted is money wasted!

One can compensate for this by doing check-pointing – i.e. writing restart states
to disk/file system, from which you can restart the simulation.

However, check-pointing takes some time2. And possibly, in HPC, a quite sub-
stantial amount of time. So, there is maybe a trade-off between check-pointing
often in order to avoid loss, and check-pointing rarely in order to use more time
for the simulation itself than for I/O.

One may consider some heuristics to find an optimal time interval for check-
pointing. If you assume an exponential failure rate for the nodes, one can state
the survival probability for a job with N nodes and a run-time of tc of the
computation as

𝑃 𝑠
𝑁 (𝑡𝑐|𝜆) = 𝑒−𝜆𝑁𝑡𝑐 ,

where 𝜆 is the mean failure rate of one node. Is the computation time 𝑡𝑐 too
large, the probability of a failure grows. The larger the job (the larger 𝑁), the
more severe is the issue.

On the other hand, if we let 𝑇𝑐 be the time needed for a check-point writing,
we may like to maximize the ratio

𝑡𝑐
𝑡𝑐 + 𝑇𝑐

.

So, optimizing

𝑤(𝑡𝑐) =
𝑡𝑐

𝑡𝑐 + 𝑇𝑐
𝑒−𝜆𝑁𝑡𝑐

with respect to 𝑡𝑐, results in

𝑡𝑐 =
𝑇𝑐
2

(︂
√︂

1 +
4

𝜆𝑁𝑇𝑐
− 1

)︂

.

As an example, for a 𝑁 = 786 node job, with a check-point duration of 𝑇𝑐 =
5𝑚𝑖𝑛, the optimal interval between two check-points would be around four
hours, for 𝜆 corresponding to about 15 years, what is quite realistic.

In OpenFOAM, if you are just out to keep some limited set of the written case
history, say for instance the last two time-steps as check-points, one sets

purgeWrite 2;

in the system/controlDict. This keeps the last two time-step data. If a new
time-step is written (underlying the normal writeControl and writeInterval

settings), the oldest one is deleted.

2Unless one can parallelize the I/O with the ongoing computations. But OpenFOAM can’t.
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Btw., on HPC systems, too, you usually have access to the case directory, even
of a running job, through the file-system. If you have set

runTimeModifiable true;

in the controlDict, you can set also values here during run-time. With this flag,
the controlDict is read after each computation step. You could e.g. increase
the frequency of write steps, or stop your simulation in a well-defined shutdown
by just stetting values and save the file. That’s maybe not a super fancy job
control. But very effective, flexible and powerful. As usual, however, with great
power ... : Be careful how you use it. Crashing an otherwise successfully running
job by inadvertent controlDict modification can be really annoying. But as
we are in the expert section of the tutorial, we assume you know what you do.

10.6 Function Objects ± In-Situ Analysis

Function Objects are another facility in OpenFOAM to create additional in-
formation and data, which can be used to minimize persistent output data.
This can be used also during the post-processing step. But some information is
maybe desired for all time-steps, not only at the two last ones (see purgeWrite
above).

For instance, you want the vorticity or Q criterion of a field because you are
interested in, or minimum-maximum for some monitoring purposes. There are
already a lot of functions available. What exactly, you can figure out via

> postProcess -list

postProcess is also the tool, with which you can apply these function objects
after the simulation (on data that are still available – and even in parallel). If
you wish to apply this function object during the simulation, you can put a
section into the controlDict. For instance,

functions

{

minmax_psi

{

type fieldMinMax;

fields ("psi");

libs (fieldFunctionObjects);

executeControl timeStep;

executeInterval 1;

writeControl writeTime;

}

}

writes out the minimum and maximum of the psi field (and the positions

https://www.openfoam.com/documentation/guides/latest/doc/guide-function-objects.html
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where they occur) at each time-step to the standard output. But also into
uniform/functionObjects/functionObjectProperties in each time-step folder.
And also collected/summarized for all time-steps in
postProcessing/minmax_psi/0/fieldMinMax.dat. This may somewhat de-
pend on the type of information the function object writes out.

As with solvers, you can write your own function objects. The easiest way is
again to copy the OpenFOAM provided function object library, and rename
everything as you like.

> cp -r $FOAM_SRC/functionObjects/field myFOLibs

> cd myFOLibs/

Change in Make/files again FOAM_LIBBIN to FOAM_USER_LIBBIN, and libfieldFunctionObjects
into libmyFOLibs. Throw out (delete) what you don’t need or want, consistently
inside Make/files and in top-level directory – e.g. remove everything except
for fieldMinMax and Make. Change what you want to have changed in the
remaining files – begin with the class names – consistently. For instance, we
rename everything as myFieldMinMax. Then again

> wmake

until no errors occur anymore, and the library libmyFOLibs.so is build in your
$FOAM_USER_LIBBIN folder.

Finally, use it. Replace in the controlDict the corresponding labels

type myFieldMinMax;

libs (myFOLibs);

That’s it. If done correctly, you now see successful output of your function
object, and can start modifying it further for your needs.

Remark: We do not go much into detail here, but with the catalyst interface,
OpenFOAM can also perform some in-situ visualization using Paraview/VTK
during the simulation.3

Also ParaView could be used to do the post-processing. And if you have to
write out anyway all time-step results, it is maybe even the more convenient
tool to do this. We later show some workflow examples.

For HPC, please remember the words about preparation at the beginning of
this part. A lot of problems – specifically big data problems – can possibly be
avoided by careful data economics.

3Where to find the catalyst library and ParaView/VTK interface in the OpenFOAM source
and installation changes from version to version! Best is to first search in the sources/applica-
tions/modules for catalyst. There, you also may find some tutorials, which illustrate the usage.

https://www.openfoam.com/news/main-news/openfoam-v1806/post-processing
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Chapter 11

Selected HPC Topics and
Workflows

This chapter is meant as support for the parallelism efforts in HPC, which
become more important the larger your ambitions – meaning your resource
requirements of your use cases.

11.1 Monitoring, Profiling, Debugging ± Automa-

tion

As you could see, OpenFOAM has a very open and accessible structure of the
cases. You can look into them during the run-time (if you want, everything is in
ASCII), and you can modify things during run-time (dictionaries, specifically).
This might scare most of the users at the beginning. But it represents also a
unique chance.

Next to the normal standard output of a simulation, you can acquire more infor-
mation by putting more debugging flags into the corresponding DebugSwitches

section of your controlDict, which takes effect almost instantly when you have
set runTimeModifiable true; there.

Specifically for large jobs, running in a dark-center (HPC cluster), having more
information for debugging – in case something goes wrong – is always better.
But usually not anymore, if performance becomes spoiled thereby. So, system-
atics is important to handle this trade-off.

What can happen?

1. Immediate abort – with some error message.

2. Delayed abort – with some error message.

75
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3. No (apparent) progress at all – no output to terminal or to file.

4. Everything seems right – on a first glance.

5. Your simulation takes much longer than expected.

1. Immediate abort – with some error message.

This would be great. Usually, the interpretation of error messages is not always
easy. But failing early saves a lot of time. You can try to classify the error, and
take counter measures – and retry. Often, OpenFOAM outputs some ominous
File IO-error. This mostly means that something is wrong with the input files
(dictionaries or the mesh). Look for more information. Maybe increase some
debugging level via the switches mentioned above. Also file encoding errors
when transferring files from Windows to Linux are possible ... (Sigh! Yes. In
the 21st century.)

If you assume some immediate numerical problem, reduce the time-step size.
However, this would mean that you already reached the time-step integration
phase. So, reading the dictionary and the mesh and initial data was already
successful. That’s at least soothing.

If you suspect some problem with the solver itself, use one of the corresponding
tutorial cases. If they do not run, you know already much more – even if
debugging the solvers is by no means simpler.

2. Delayed abort – with some error message.

This is not so nice – and some waste of time. But it is still a demonstration
that something works at least in principle. Of course, there might always break
some hardware, like a node or a network connection. But fortunately, you have
some check-points, and can restart from the last check-point. If the problem
then recurs, the probability is high that you met some problem of numerical
stability. Check the Courant numbers and residuals. Use e.g. foamMonitor,
where suitable for monitoring the residuals as function over time (in order that
is worked, Gnuplot must be available – installed, and executable from the shell).

3. No (apparent) progress at all – no output to terminal or to file.

This is not nice. No reaction at all. You must increase the output level! Figure
out where the program stops, or hangs, or idles. Sometimes you may hit some
real program issue like a dead-lock. But in order that a developer can fix
it, one really needs to identify it, and create a 100% reproducing test-case. We
categorize such a case as rather improbable for OpenFOAM from our experience.

4. Everything seems right – on a first glance.

This is probably the most devious case. Well, we hope that if no errors occur,
there runs everything fine. But you should go sure! Some parameter set wrongly
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is easy to accomplish. You seriously don’t want to figure out this after hours,
possibly days or even months of simulation!

You can look into the processor directories, and check whether the time-step
output happens regularly – at least you can see when the last output was written
(if at all). Using reconstructPar on a specific time-step, and analyzing it using
ParaView is always possible (see below for some HPC ParaView workflows). If
something is not as expected, you can always intervene, and in final consequence
also cancel your job.

Having the feeling of control is very important. HPC is expensive! So, double-
check!

5. Your simulation takes much longer than expected.

This already assumes that you really did some systematic scaling tests. So,
you have a realistic expectation of your anticipated time-integration progress,
and there should be no sudden surprises! Question is then what has changed
since? Often, this question is not easy to answer. System and IO performance
degradation definitely can occur. But before contacting the administrators, be
sure that this is a real performance drop on the system! For the first time of
your simulation, your expectations might have been wrong. Double-check! If
you are sure that a simulation before was faster, prove it! Collect performance
data for a more or less permanent surveillance – Choose some reasonable and
convenient, but still expressive metrics!

Sometimes, performance may change only slowly over time.1 Also document
when you changed some parameters in your case! We mentioned some version
control like git that can support you here. Try to correlate your changes with
the appearance of your performance change observation.

If you use adaptive mesh methods, reconstruction and decomposition of the
mesh from time to time might be necessary to keep some level of workload
balance among the MPI ranks. External coupling of OpenFOAM with other
software may also result in performance degradation (or, in worst case scenar-
ios, in numerical instabilities). Here, some special care must be exercised.

OpenFOAM also can be build with profiling or debugging compiler flags, as we
already mentioned earlier. However, unless you are a developer of OpenFOAM
(not just a solver or utility programmer, or even only a user!), this won’t really
help you. And the vast majority of problems we have seen so far are issues
caused by wrong handling, unsystematic approaches to HPC workflows, or real
system problems (MPI, IO, OS). The latter ones are usually attempted to be
caught by the HPC system maintainers. But hints and help from users are
welcome, of course.

1Btw., the system CPU frequency settings may change intentionally according to some
HPC admin’s policy.
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Last but not least, we vote for automation. OpenFOAM already comes with
some bash and python (pyFoam) scripting interface. Although it needs time
to get used to it, HPC is all about automation – specifically the workflows. It
is faster (in the sense of workflow development), more efficient in resource ex-
ploitation, less error-prone, self-documenting, repeatable, extensible, . . . Please
look into the Allrun scripts of the tutorial cases! They are intuitive enough,
even if you don’t decide to become a bash guru. Using these scripts can already
be the first step for a job script (or part of a sub-job script – see below).

But keep in mind that some steps are notoriously serial. Try to judge whether
a login node is maybe better than hundreds of nodes idling. Not everything can
be automated on the cluster with efficiency.

11.2 Parallelism-Resistant Workflows

Some of the current CFD workflows cause some problems on HPC systems,
when they are implemented as just moderately parallel, long-term simulations
– such as, for instance, turbulence averaging studies in DNS. They block some
smaller resources for a long time. Other larger jobs (with more nodes) just may
not be able to start – even if all the other nodes are idle.

In HPC, one should always have a look for opportunities of more parallelism,
instead of occupying resources for a rather long time period.

Please, consider if time-averages can be replaced by ensemble-averages, or a
combination of both with much shorter time-averaging periods. The advantage
is that the ensemble-averages are independent of each other, and can run in
parallel.

serial

averaging phase

parallel

settling phase

Figure 11.1: Parallelization strategy scheme.

The idea would be – according to the Ergodic Hypothesis – that the smaller scale

https://pypi.org/project/PyFoam/
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turbulence does not change substantially the averages. This means, different
turbulent flows with slightly different initial conditions should lead to the same
averages. So, randomly disturbing the initial conditions of the different samples
in the ensemble (maybe perturbations underlying some sort of control to keep
conserved quantities at the desired values) would lead to a set of time-averages
𝑦𝑖, with some uncertainty (standard deviation) 𝜎𝑖 (index 𝑖 denotes the sample
value of a simulation with one specific initial condition in the ensemble), which
can be combined via

𝑦 =

∑︀

𝑖 𝑤𝑖𝑦𝑖
∑︀

𝑖 𝑤𝑖

, �̂�2 =

(︃

∑︁

𝑖

𝑤𝑖

)︃

−1

with 𝑤𝑖 =
1

𝜎2
𝑖

.

A problem might occur if the initial settling phase until a stable global turbulent
flow takes quite a long time. This phase cannot be parallelized much. Still,
there are maybe ways to accelerate, and thus shorten it – even if an extended
parallelism is not possible. As the details of this initialization phase are not
of much interest, one can skip all types of elaborate analysis on these, and
reduce the I/O to some minimum required. Multi-grid methods, and also other
pre-conditioning techniques, can be used to settle the flow as fast as possible.
Once this stage is reached, small perturbations can then be imposed for each of
the ensemble members differently (randomly). The subsequent settling phase is
presumably much shorter, and one then has many samples running in parallel,
which is comparable in workflow handling as described in the next section.

There are possibly more such workflows that appear to resist parallelism. HPC
and parallelism are hard work. Maybe there is a way if you try harder. But it
should be accepted when there is possibly no way. This then is probably not a
viable case for an HPC system, yet.

11.3 Uncertainty Quantification and Parameter Stud-

ies

Uncertainty quantification and parameter studies are two use cases, where one
usually does not have large cases, but many smaller ones, which in the sum are
as resource hungry as a single big case. In both these use cases, the input set
might be more or less the same, and only certain model or geometry parameters,
or initial or boundary conditions, change from run to run. But again, the cases
for specific parameter sets can run independently, and therefore also in parallel.

OpenFOAM does not really provide a framework for this. But by means of
bash, python, or any other scripting language, it is more or less easy to realize
it manually. These efforts can be subsumed as job or task farming.

We showed already in a previous chapter how reconstruction steps can run in
parallel. The major difference now is that the OpenFOAM solvers can work
already in parallel. So, the question is: Should I create many thousands of jobs,
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and let the resource scheduler do all the resource management work? Or is it
my own responsibility to manage the resources in a single big job?

From an HPC cluster administrator’s point of view, clearly the second! From
user’s perspective – well, the first one – we guess. So, how can we put this
together?

Fortunately, Slurm offers some capabilities to let users also schedule smaller jobs
in bigger jobs. srun is capable to be called inside a sbatch/salloc submitted
Slurm job.

What’s to do for the user? Two things: (1) analyze your tasks, (2) write a job
script! Well, and finally run the job and monitor the advancement, . . . and
possibly debug occurring problems.

(1) is simple. Take one example task (with a fixed parameter set), and let it
run. Check how much memory it requires, and how many parallel MPI ranks
are reasonable. This determines the pipe-line structure of your job-farming job
later. Meant by this is that all the smaller jobs are supposed to require similar
resources – memory and run-time. So it makes possibly sense to distribute the
big job over as many nodes 𝑁 such that 𝑀 smaller jobs can run in parallel –
exploiting as much of the resources (CPUs or memory) as possible. If a smaller
job runs for a time period of about 𝑇 , and you have 𝐾 such small jobs in total,
then your single big job with 𝑁 nodes would need to run about

𝑡job =
𝐾

𝑀
𝑇 .

Example: 𝐾 = 100000 small jobs of mean run-time of 𝑇 = 5 minutes, on
𝑁 = 200 nodes with say 𝑀 = 400 small jobs in parallel (one small job occupies
half a node) would last about 𝑡job = 21 hours. That’s quite acceptable when
considering that 100000 five-minute jobs running in series otherwise would last
for more than a year.

(2) Implementing this is a bit more difficult, of course, and depends to some
extent on the HPC cluster your are using. We indicate here one viable way
with Slurm. The best is to bundle the workflow of a small job/task again into
a script, where you parameterize the input data set again on some environment
variable. srun, for instance, defines the $SLURM_STEP_ID environment variable.
By it you can e.g. parameterize the line of an input file, or a database entry.

The main job script may look roughly like this.

#!/bin/bash

#SBATCH HEADER

# job environment setup

task() {

srun <resource-requirement-spec> <subtask> &> log.$1
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}

export -f task

parallel -P <M> task ::: {1..K}

Here, we use again GNU parallel. It is very convenient. 𝑀 and 𝐾 are the
number as above. So, GNU parallel executes exactly 𝑀 tasks simultaneously
out of the range 1 . . .𝐾. Here, you can adapt the range – e.g. if you only have
to re-run the last half of tasks.

The <resource-requirement-spec> specify the single small jobs CPU and
memory requirements. They must be specified such that Slurm puts them on
independent resources. That’s not always trivial, e.g. if you want only some few
CPUs per node for a subtask, and so some of the subtasks would run on CPUs
of two different nodes. The best is first to start with some dummy to check the
correct MPI task placement.2

<subtask> is some sub-task command or script executing the single case work-
flow in one directory (possibly creating it before, and copying input files there).
It can also be a Python script. You can give $1 as a parameter, if your script
accepts it – and maps it to some input parameter set.

What is not included is sort of a bookkeeping, which of the jobs already ran
successfully, and which not. This is highly relevant if your big job fails prema-
turely before finishing, and you need to restart. Maybe best is not to restart the
subtasks where they where interrupted, but at their beginning. And jobs that
already succeeded might set a lockfile3, which can be checked by the subtask
script. And if it is there, the script just finishes immediately.

More sophisticated methods, but also more complex ones, might include some
database. There are but also already ready-to-use frameworks for job-farm
processing (e.g. radical cybertools, or flux).

11.4 HPC Post-Processing

We would like to revisit ParaView at this place, as it is made for big data
and HPC, in fact. It achieves this capability by a somewhat more complex
construction, sometimes not easy to comprehend by beginners. Furthermore,
it involves network communication, which is an extra complication for HPC
beginners. But there is no need to be scared.

For the following, we assume that you have already some familiarity with the
local ParaView workflows. That is, you can start the ParaView GUI, load
some locally residing OpenFOAM case, apply some filters, and render some

2srun knows a -mpi option, just for the case you wonder where srun knows from, which
MPI it should use!

3See for instance the lockfile man page.

https://www.gnu.org/software/parallel/
https://radical-cybertools.github.io/
https://computing.llnl.gov/projects/flux-building-framework-resource-management
https://linux.die.net/man/1/lockfile
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nice images. Essentially, this is always the same workflow, also for what comes
next.

The architecture of ParaView looks roughly as follows (see Figure 11.2).

Paraview GUI
pvpython

pvbatch
ParaWeb Catalyst Custom App

UI (Qt Widgets, Python Wrapper)
Network

Paraview Server

VTK

OpenGL MPI IceT Etc.

Figure 11.2: The ParaView architecture scheme.

ParaView GUI, and other tools are build on top of the ParaView Server, which
essentially wraps mostly VTK (Visualization Tool Kit). This client-server ar-
chitecture is the necessary prerequisite for the parallelism. Luckily, a user will
mostly be agnostic about how exactly this parallelism works. ParaView does
already a lot automatically for us. The ParaView Documentation devotes a
complete chapter for Parallel Data Visualization. Please take it as reference!

1. Remote Visualization

When working on HPC systems, your situation is roughly as follows.

local PC Internet

firewall

login node cluster compute nodes

You have your local PC or laptop somehow connected to the internet, via which
you can reach the HPC center’s login node. For security reasons, these servers
(login nodes) are secured by a firewall, such that you can access them only with
special tools (browser for web-servers, SSH client for SSH-servers, ...).

Behind these login nodes, you find protected the cluster with its compute nodes.
They are not directly accessible, usually, but only via some RSM (Resource
Scheduler and Manager) – e.g. like Slurm. This is necessary for some optimal
(efficient) resource management and a fair distribution of the resources among
many users.

https://docs.paraview.org/en/latest/ReferenceManual/parallelDataVisualization.html
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Still, users can also start some server on the compute node (via the RSM), and
connect to them via network. Login and compute nodes are connected to the
network file system (GPFS, for instance), where the large simulation data are
located, which you don’t want to move/copy.4

So, the question is, how to best analyze these data?

If you want to interactively analyze the data, you need to start a ParaView GUI
somewhere. There are actually only two places – on your local PC, or on the
login-node (e.g. within a SSH X-Forwarding5, or VNC server – for the latter
you need a VNC client on your local device).

a) You start theGUI on the login node, you have immediate access there to
the data. With X-Forwarding, you see the GUI on your local monitor, and can
immediately start the analysis. That’s the most convenient solution. However,
you are mostly limited to the resources on this node, which you share with other
users.

local PC Internet

firewall

login node cluster compute nodes

ssh -Y

Paraview GUI

Figure 11.3: a) ParaView GUI forwarded to local X server with SSH X-
forwarding.

This can be accomplished (with local X-server running; Xming for instance
under Windows) via

local> ssh -Y myusername@login # credentials are required

login> module load paraview # check before available paraview modules

login> paraview

myusername and login must, of course, be replaced by your user ID and the
correct login server’s name, respectively.

b) You start a VNC server remotely, and are connected with your local
client, you should see a remote desktop session – sort of. You can open a
terminal therein like on your local device, but your are remote. Now, you can
load there a ParaView module, and start the ParaView GUI. The rest of the

4We really assume here that you have large amounts of data now. So, these workflows are
borne out of necessity instead of convenience.

5That is not feasible, if you have no local X-Server running. And it is not really a convenient
solution, if your network connection to the login node is slow.
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analysis workflow is the same as under a).

local PC Internet

firewall

login node cluster compute nodes

ssh -L 12345:localhost:5902

Paraview GUI
VNC client

port 12345

port 5902

VNC server

display :2

Figure 11.4: b) VNC session via SSH port-forwarding tunnel with Par-
aView GUI started remotely.

In order to create such a VNC session, there are some things to do, however,
rendering this work-flow a bit more complicated than simple X-Forwarding.
The advantage is that you can interrupt the connection to the VNC server, and
reconnect later. For unstable network connections, that’s definitely preferable
than to lose the work accomplished so far inside of the session. Furthermore,
VNC connections are usually faster and the interaction more responsive than
X-Forwarding, because only the graphics needs to be send to you local device.

Prerequisites: a local VNC client (TigerVNC offers standalone VNC clients), a
remote VNC Server (with a window manager; must be provided by the cluster
administrators).

1. To start the remote server, ssh to the login-node, and start the VNC server.

local> ssh myusername@login

login> vncserver

[...]

New 'login:1 (myusername)' desktop is login:1

You can also start the server with a definite display number via

login> vncserver :3

[...]

New 'login:3 (myusername)' desktop is login:3

This display must not already be occupied by another user, of course. You
can also check whether you have already a VNC server running on this
login node via vncserver -list, and just re-use it.

2. The next step is to open a SSH port-forwarding tunnel, connecting a re-
mote port to a local port. This is the way to let servers and clients
communicate through a secure SSH connection. There are several ways to
setup this forward tunnel – depending a bit also on your local SSH client.
The most general one that seems to work with any client is to switch to
the SSH command line shell.
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login> # press escape sequence ~C such that these

# characters are not visible in the shell6

ssh> # you are now in the SSH command line shell

To set up a forward tunnel is just
-L <local-port>:remote-name:<remote-port>.

For the local-port, just choose some number larger 1024 and smaller
than 65536, which is not yet occupied on your system. For example, we
take here 12345. The remote-port is that port, where your VNC server
is listening on. It is always 5900 plus the VNC server’s display number.
Above, we chose :3 as the display. So, this server listens on port 5903.
Stays to figure out remote-name. We will see later that we can take here
a server name, which is different from the login node. But as the VNC
server runs on the login node, we can simply use localhost (or the local
IP address of the listening network card)

ssh> -L 12345:localhost:5903

This tunnel will be removed when you close the SSH connection, where it
is attached to.

3. In the final step, open the VNC client on your local device, and connect
to localhost:12345. This localhost is now indeed your local device. If
you find this confusing ... Well, it is. After entering the VNC session
password (you hopefully did not forget, yet), you should see the normal
window manager GUI, where you can now work.

Once you finished, please stop the VNC server again.

login> vncserver -kill :3

As you can have several VNC servers running in parallel, you must address
the one you want to get killed. Switching off the VNC server should be done
for security reasons. Don’t leave resources running unattendedly if you
don’t need them!

c) ParaView also allows directly a server-client connection. In fact, this
is always used by ParaView. But you can ran the ParaView GUI on one device
(e.g. on your laptop) and the ParaView server on another (e.g. on the login
node). In order that this works, you must have the local and remote paraview
of the same version. The workflow is as follows.

1. Connect to the remote system

local> ssh myusername@login

login> pvserver

Waiting for client...

Connection URL: cs://login:11111

6Possibly press Enter once to bring the shell into a state where it accepts this escape
sequence.
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local PC Internet

firewall

login node cluster compute nodes

ssh -L 11111:localhost:11111

Paraview GUI PV Server
port 11111 port 11111

Figure 11.5: c) ParaView server remotely, and ParaView GUI locally connected
through a SSH tunnel.

Accepting connection(s): login:11111

We recommend to start the pvserver from the OSMesa installation
in order to also have remote rendering capabilities. Per default, pvserver
listens on port 11111. We will just need it to set up a SSH forward-tunnel.
You can change this port via --server-port=¡port-number¿, for instances

login> pvserver --server-port=11112

Choose one free port. If a port is already occupied, you will be informed.

2. Set up the SSH forward tunnel. As above, switch to the SSH command
line shell, and insert the port. For instance, for our second example

ssh> -L 11111:localhost:11112

The local and remote ports really don’t need to be the same.

3. Open finally the ParaView GUI on your local device. Click on the
in the toolbar. The Choose Server Configuration menu opens. The first
time, you need to click on Add Server. Give it a nice and suitable Name.
Server Type can stay Client/Server. localhost for the Host field is also fine.
Finally, enter the local port 11111 (or which you chose) into the Port field.
Configure → Save. Ready. Now, you can click on Connect.

In the SSH terminal, you should see something like Client connected. You can
open the View → Memory Inspector to see how much memory ParaView con-
sumes locally and remotely. You can now open the OpenFOAM case as usual.
In the file open menu, you see the remote file system, and can navigate to the
OpenFOAM case.

When you close the ParaView GUI, or you disconnect (tool menu), the remote
pvserver stops.

Don’t wonder that also this mode is as fast as your internet network bandwidth
permits.
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d) You can combine essentially the workflows of b) and c). So, first you
can setup a VNC session on the login node as under b). Then open a
ParaView GUI on that login-node (within the VNC session), which you
now connect to a pvserver running on compute nodes – much in the same
way as described in c). You just don’t need any further SSH tunnel, because
compute and login nodes are not separated by a firewall.

local PC Internet

firewall

login node cluster compute nodes

ssh -L 12345:localhost:5902

Paraview GUI
VNC client

port 12345

port 5902

VNC server

display :2
PV Server

port 11111port 11111

Figure 11.6: d) ParaView server on compute nodes, ParaView GUI on login
node, and VNC session on login node through SSH tunnel.

The real fun comes now from the fact that you can run the pvserver MPI
parallel. So, after setting up the VNC session and starting the Paraview GUI,
you submit a Slurm job with the following content.

#!/bin/bash

#SBATCH HEADER

# job environment setup

mpiexec -ppn 4 pvserver

This is for e.g. 4 MPI ranks per node. You can also adjust the Slurm SBATCH
header accordingly, and mpiexec might react on those settings. Just submit it
via

login> sbatch pv-job.sh

When the job is running, you can check the output of it for where the server
runs. Take this compute node’s name, and the port number (here just 11111 –
the default), and connect your GUI with that server.

Disconnecting the server will automatically stop the pvserver, and thus also
the job.

If you really cannot get any VNC server running, you can also implement so-
lution c), but with the pvserver running on the compute nodes. Submit
the pvserver job as before, and figure out, on which node it is running (and at
which port). Create a SSH tunnel.

-L 11111:compute-node:11111
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Here, compute-nodemust be replaced by the name or IP address of the compute
node where the pvserver was started. Finally, open your local ParaView GUI
(on your local device), and connect to localhost:11111.

Again, don’t wonder if that’s slow. Yet, to not have to copy the data might
outweigh for the loss of speed.

2. Remarks to Parallel Visualization

In order to really benefit from parallelism, you should check in the Memory
Inspector that memory is uniformly occupied. If not, you run specifically for
large cases in the problem of load imbalances and, in the worst case, into a out-
of-memory (OOM) situations, in which the system simply kills your processes.

The ParaViewGuide hints on that you should setup the visualization pipeline
in such a way that you reduce the amount of data as fast as possible. That’s
the more true for big amount of data.

The decomposed OpenFOAM cases are indeed read in parallel by ParaView.

We already mentioned that on the login node there is usually no X-server run-
ning, and that you should use the pvserver build with OSMesa. This holds
true specifically for the compute nodes. Offscreen (software) rendering is usually
slower than hardware-supported rendering. But when no hardware is at hand,
that’s the best you can do.

The parallel visualization might produce spurious graphics effects and artifacts
at the boundaries of the domains, which represent the volumes for each MPI
rank. Specifically for volume rendering, this might have detrimental and ugly
effects. The D3 filter is a possible solution. You can define some ghost cell
layers, which prevent from those artifacts.

3. Non-Interactive Visualization (pvbatch)

When you want to do some visualization repeatedly – possibly just with dif-
ferent input data sets – ParaView’s (actually VTK’s) pipeline architecture is
exactly designed for this purpose. This means that you can define a visualiza-
tion pipeline, and apply it to different input data sets.

The ParaView GUI can be used to visually setup this pipeline. You can save it
also as Python script, which can be manipulated and executed via pvpython or
pvbatch. The latter has the advantage of being MPI parallelizable. So writing
a job script with

mpiexec pvbatch some_pv_script.py

is actually quite the same as an OpenFOAM simulation – from a HPC point of
view – meaning you just start a MPI parallel program to process some input,
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and to create some output.

Such script can also be created in a different fashion. In the ParaView GUI,
you can click Tools → Start Trace, and go on with loading the data, and setting
up the visualization pipeline. You can even save the picture/animation. Just
do that on a small data set in order not to waste too much time with waiting
for paraview to finish working. When you finished, just Tools → Stop Trace.
A window will pop up with a lot of Python code – the captured trace of what
you just did within the GUI. You can save this trace, and manipulate it with
an editor, and – right – call it again with pvbatch on your actual data sample
to be analyzed on the cluster.

4. Remark: OpenFOAM to VTK and paraFOAM

OpenFOAM provides the tool foamToVTK. It transforms the OpenFOAM out-
put into the native VTK file format, which is often better suitable for parallel
handling. Executing foamToVTK in the OpenFOAM top level case directory just
creates a VTK directory, with a bunch of .vtm files, which can be opened in
paraview natively.

Again, you have some fine control over which time steps or regions you want
to transform into the VTK format. And, it can run in parallel. Consult the
output of foamToVTK -help for more information!

Remark: paraFoam can also be used if you really need or want to. Essentially,
it is a script, and it creates just a .foam file, and then calls ParaView. In order
that this works, ParaView must be findable in the PATH.
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Appendix A

Useful Links and Literature

The following list is by no means complete. Nor is it meant for a serial read
through! Only if you feel that you need help, please consider to consult these
references. And use the search capabilities of web pages to navigate to the place
you desire your answer from.

In most cases, Google will be a good first starting point when having concrete
questions/issues.

A.1 Bash/Shell/Linux

❼ [TLDP] Bash Beginner’s Guide
[TLDP] Advanced Bash-Scripting Guide

❼ [GNU] Bash Reference Manual

❼ [GNU] Software
[GNU] Coreutils User Guide

More tools can be involved like sed, awk, gnuplot, python, ... But is not manda-
tory.

A.2 C++

❼ [cpp reference] C++ online reference

❼ LRZ C++ Beginner’s Course

❼ [ESI OpenFOAM] API Guide

❼ [Foundation OpenFOAM] C++ Source Code Guide
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https://tldp.org/LDP/Bash-Beginners-Guide/html/
https://tldp.org/LDP/abs/html/
https://www.gnu.org/savannah-checkouts/gnu/bash/manual/bash.html
https://www.gnu.org/software/
https://www.gnu.org/software/coreutils/manual/coreutils.html
https://www.gnu.org/software/sed/manual/sed.html
https://www.gnu.org/software/gawk/manual/gawk.html
http://www.gnuplot.info/documentation.html
https://en.cppreference.com/
https://smarty.userweb.mwn.de/files/course.pdf
https://www.openfoam.com/documentation/guides/latest/api/
https://cpp.openfoam.org/
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A.3 CAD

❼ [Blender] (docu modelling)

❼ [FreeCAD] (docu)

A.4 Environment Modules

❼ https://modules.readthedocs.io/

A.5 OpenFOAM

❼ [Foundation OpenFOAM], [ESI OpenFOAM]

❼ [Youtube] CFD by József Nagy

❼ [Github] Basic OpenFOAM Programming Tutorials

❼ [PDF] OpenFOAM Programmer’s Guide

❼ [Youtube] OpenFOAM Tutorials

❼ [Wiki Openfoam] Introduction to OpenFOAM (Kenneth Hoste, Hrvoje
Jasak)

❼ Tomislav Maric, Jens Höpken, and Kyle Mooney. The OpenFOAM Tech-
nology Primer. sourceflux, 2014.

❼ F. Moukalled, L. Mangani, and M. Darwish. The Finite Volume Method in
Computational Fluid Dynamics - An Advanced Introduction with OpenFOAM➤

and Matlab➤. Number 113 in Fluid Mechanics and its Applications.
Springer, 2016.

❼ [Wiki Openfoam PDF] A Comprehensive Tour of snappyHexMesh
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Appendix B

Example Files

B.1 Gmsh Script of the KÂarmÂan Vortex Sheet Ex-

ample

//- Parameters -//

channelWidth=10.0;

channelLength=25.0;

meshNumber=50;

focalProgr=1.1;

//--- Do not edit!

halfChannelWidth = channelWidth/2.;

wakeLength=channelLength-halfChannelWidth;

//- Points -//

Point(0) = 0.0, 0.0, 0, 1.0; // center point

// obstacle points (0.5*cos(45 deg)=0.5/sqrt(2)=0.353553591)

Point(1) = -0.353553591, 0.353553591, 0, 1.0; // top left

Point(2) = 0.353553591, 0.353553591, 0, 1.0; // top right

Point(3) = 0.353553591, -0.353553591, 0, 1.0; // bottom right

Point(4) = -0.353553591, -0.353553591, 0, 1.0; // bottom left

// channel boundary points

Point(5) = -halfChannelWidth, halfChannelWidth, 0, 1.0; // top left

Point(6) = halfChannelWidth, halfChannelWidth, 0, 1.0; // top right

Point(7) = halfChannelWidth,-halfChannelWidth, 0, 1.0; // bottom right

Point(8) = -halfChannelWidth,-halfChannelWidth, 0, 1.0; // bottom left

Point(9) = wakeLength, halfChannelWidth, 0, 1.0; // wake top right

Point(10) = wakeLength,-halfChannelWidth, 0, 1.0; // wake bottom right

//- Lines -//

// outer channel boundary lines

Line(1) = 5, 6; Transfinite Curve 1 = meshNumber Using Progression 1; // top

Line(2) = 6, 7; Transfinite Curve 2 = meshNumber Using Progression 1; // inner outlet

Line(3) = 7, 8; Transfinite Curve 3 = meshNumber Using Progression 1; // bottom

Line(4) = 8, 5; Transfinite Curve 4 = meshNumber Using Progression 1; // inlet

Line(13) = 9, 6; Transfinite Curve 13 = meshNumber Using Progression 1; // top wake

Line(14) = 10,9; Transfinite Curve 14 = meshNumber Using Progression 1; // wake outlet

Line(15) = 7,10; Transfinite Curve 15 = meshNumber Using Progression 1; // bottom wake

// inner non-boundary lines

Line(5) = 1, 5; Transfinite Curve 5 = meshNumber Using Progression focalProgr; // top left

Line(6) = 2, 6; Transfinite Curve 6 = meshNumber Using Progression focalProgr; // top right

Line(7) = 3, 7; Transfinite Curve 7 = meshNumber Using Progression focalProgr; // bottom right

Line(8) = 4, 8; Transfinite Curve 8 = meshNumber Using Progression focalProgr; // bottom left

// obstacle lines

Circle(9) = 1, 0, 2; Transfinite Curve 9 = meshNumber Using Progression 1; // top

Circle(10)= 2, 0, 3; Transfinite Curve 10 = meshNumber Using Progression 1; // right

Circle(11)= 3, 0, 4; Transfinite Curve 11 = meshNumber Using Progression 1; // bottom

Circle(12)= 4, 0, 1; Transfinite Curve 12 = meshNumber Using Progression 1; // left

//- Surfaces -//

// front face

97
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Curve Loop(1) = 5, 1, -6, -9; Plane Surface(1) = 1; Transfinite Surface 1; Recombine Surface 1; // top

Curve Loop(2) = 10, 7, -2, -6; Plane Surface(2) = 2; Transfinite Surface 2; Recombine Surface 2; // right

Curve Loop(3) = 8, -3, -7, 11; Plane Surface(3) = 3; Transfinite Surface 3; Recombine Surface 3; // bottom

Curve Loop(4) = 4, -5, -12, 8; Plane Surface(4) = 4; Transfinite Surface 4; Recombine Surface 4; // left

Curve Loop(5) = 2, 15, 14, 13; Plane Surface(5) = 5; Transfinite Surface 5; Recombine Surface 5; // wake

// back face

Extrude 0, 0, 0.1 Surface1; Surface2; Surface3; Surface4; Surface5; Layers1; Recombine;

Physical Surface("FrontAndBack", 126) = 37, 103, 81, 59, 125, 5, 2, 3, 4, 1;

Physical Surface( "Inlet", 128) = 90;

Physical Surface( "Outlet", 129) = 120;

Physical Surface("TopAndBottom", 130) = 28, 72, 116, 124;

Physical Surface( "cylinder", 132) = 36, 98, 46, 80;

Physical Volume( "internal", 133) = 1, 4, 2, 3, 5;

B.2 KÂarmÂan constant/polyMesh/boundary

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

arch "LSB;label=32;scalar=64";

class polyBoundaryMesh;

location "constant/polyMesh";

object boundary;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

5

(

FrontAndBack

{

type empty; // <- empty

// physicalType patch; // commented out

nFaces 34810;

startFace 34515;

}

TopAndBottom

{ ... }

cylinder

{ ... }

Inlet

{ ... }

Outlet

{ ... }

)

// ************************************************************************* //

The rest was shortened for better comprehensibility. Also, your numbers might
deviate from those here.
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B.3 KÂarmÂan 0/p

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

arch "LSB;label=32;scalar=64";

class volScalarField;

location "0";

object p;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [ 0 2 -2 0 0 0 0 ] ;

internalField uniform 0;

boundaryField

{

FrontAndBack

{

type empty;

}

TopAndBottom

{

type zeroGradient;

}

cylinder

{

type zeroGradient;

}

Inlet

{

type zeroGradient;

}

Outlet

{

type fixedValue;

value uniform 0;

}

}

// ************************************************************************* //

B.4 KÂarmÂan 0/U

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |
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| \\ / O peration | Version: 2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

arch "LSB;label=32;scalar=64";

class volVectorField;

location "0";

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

FrontAndBack

{

type empty;

}

TopAndBottom

{

type slip;

}

cylinder

{

type fixedValue;

value uniform (0 0 0);

}

Inlet

{

type fixedValue;

value uniform (1 0 0);

}

Outlet

{

type zeroGradient;

}

}

// ************************************************************************* //

B.5 KÂarmÂan system/controlDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/
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FoamFile

{

version 2.0;

format ascii;

class dictionary;

object controlDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application icoFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 150;

deltaT 0.005;

writeControl timeStep;

writeInterval 200;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

// ************************************************************************* //

B.6 KÂarmÂan system/blockMeshDict

/*--------------------------------*- C++ -*----------------------------------*\

| ========= | |

| \\ / F ield | OpenFOAM: The Open Source CFD Toolbox |

| \\ / O peration | Version: 2112 |

| \\ / A nd | Website: www.openfoam.com |

| \\/ M anipulation | |

\*---------------------------------------------------------------------------*/

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

scale 1;

vertices (

(-5 5 0) // 0 top left front

( 5 5 0) // 1 top right front

( 5 -5 0) // 2 bottom right front

(-5 -5 0) // 3 bottom left front

(-0.353553591 0.353553591 0) // 4 cyl top left front

( 0.353553591 0.353553591 0) // 5 cyl top right front

( 0.353553591 -0.353553591 0) // 6 cyl bottom right front

(-0.353553591 -0.353553591 0) // 7 cyl bottom left front
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(25 5 0) // 8 wake top front

(25 -5 0) // 9 wake bottom front

(-5 5 0.1) // 10 top left back

( 5 5 0.1) // 11 top right back

( 5 -5 0.1) // 12 bottom right back

(-5 -5 0.1) // 13 bottom left back

(-0.353553591 0.353553591 0.1) // 14 cyl top left back

( 0.353553591 0.353553591 0.1) // 15 cyl top right back

( 0.353553591 -0.353553591 0.1) // 16 cyl bottom right back

(-0.353553591 -0.353553591 0.1) // 17 cyl bottom left back

(25 5 0.1) // 18 wake top back

(25 -5 0.1) // 19 wake bottom back

);

blocks (

hex (0 4 5 1 10 14 15 11) (60 60 1) simpleGrading (0.05 1 1) // top

hex (3 7 4 0 13 17 14 10) (60 60 1) simpleGrading (0.05 1 1) // left

hex (2 6 7 3 12 16 17 13) (60 60 1) simpleGrading (0.05 1 1) // bottom

hex (1 5 6 2 11 15 16 12) (60 60 1) simpleGrading (0.05 1 1) // right

hex (1 2 9 8 11 12 19 18) (60 60 1) simpleGrading (1 1 1) // wake

);

edges (

arc 4 5 ( 0 0.5 0) // cyl top front

arc 14 15 ( 0 0.5 0.1) // cyl top back

arc 7 4 (-0.5 0 0) // cyl left front

arc 17 14 (-0.5 0 0.1) // cyl left back

arc 6 7 ( 0 -0.5 0) // cyl bottom front

arc 16 17 ( 0 -0.5 0.1) // cyl bottom back

arc 5 6 ( 0.5 0 0) // cyl right front

arc 15 16 ( 0.5 0 0.1) // cyl right back

);

boundary (

FrontAndBack {

type empty;

faces (

( 0 1 5 4) // top front

(10 14 15 11) // top back

( 3 0 4 7) // left front

(13 17 14 10) // left back

( 2 3 7 6) // bottom front

(12 16 17 13) // bottom back

( 1 2 6 5) // right front

(11 15 16 12) // right back

( 1 8 9 2) // wake front

(11 12 19 18) // wake back

);

}

TopAndBottom {

type patch;

faces (

( 0 10 11 1) // top

( 1 11 18 8) // top wake

( 2 12 13 3) // bottom

( 9 19 12 2) // bottom wake

);

}
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Inlet {

type patch;

faces (

(0 3 13 10)

);

}

Outlet {

type patch;

faces (

(8 18 19 9)

);

}

cylinder {

type patch;

faces (

( 5 15 14 4) // top

( 4 14 17 7) // left

( 7 17 16 6) // bottom

( 6 16 15 5) // right

);

}

);

// ************************************************************************* //

B.7 KÂarmÂan system/blockMeshDict advanced

In the following we leave out the default comments to save space. They are not
required for a successful OpenFOAM operation.

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

scale 1;

channelWidth 10; // width of the channel

wakeLength 20; // length of wake channel

numberOfMeshPoints 60; // number of mesh cells per base line

grading 0.05; // mesh concentration along lase line

w 0.1; // width in z direction

//------------------------------------------------------

r 0.5;

h #eval{ $channelWidth/2.};

l #eval{$h + $wakeLength};

c #eval{$r/sqrt(2)};

n $numberOfMeshPoints;

g $grading;

vertices (

name v0 (-$h $h 0) // 0 top left front

name v1 ( $h $h 0) // 1 top right front

name v2 ( $h -$h 0) // 2 bottom right front
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name v3 (-$h -$h 0) // 3 bottom left front

name v4 (-$c $c 0) // 4 cyl top left front

name v5 ( $c $c 0) // 5 cyl top right front

name v6 ( $c -$c 0) // 6 cyl bottom right front

name v7 (-$c -$c 0) // 7 cyl bottom left front

name v8 ($l $h 0) // 8 wake top front

name v9 ($l -$h 0) // 9 wake bottom front

name v10 (-$h $h $w) // 10 top left back

name v11 ( $h $h $w) // 11 top right back

name v12 ( $h -$h $w) // 12 bottom right back

name v13 (-$h -$h $w) // 13 bottom left back

name v14 (-$c $c $w) // 14 cyl top left back

name v15 ( $c $c $w) // 15 cyl top right back

name v16 ( $c -$c $w) // 16 cyl bottom right back

name v17 (-$c -$c $w) // 17 cyl bottom left back

name v18 ($l $h $w) // 18 wake top back

name v19 ($l -$h $w) // 19 wake bottom back

);

blocks (

hex (v0 v4 v5 v1 v10 v14 v15 v11) ($n $n 1) simpleGrading ($g 1 1) // top

hex (v3 v7 v4 v0 v13 v17 v14 v10) ($n $n 1) simpleGrading ($g 1 1) // left

hex (v2 v6 v7 v3 v12 v16 v17 v13) ($n $n 1) simpleGrading ($g 1 1) // bottom

hex (v1 v5 v6 v2 v11 v15 v16 v12) ($n $n 1) simpleGrading ($g 1 1) // right

hex (v1 v2 v9 v8 v11 v12 v19 v18) ($n $n 1) simpleGrading (1 1 1) // wake

);

edges (

arc v4 v5 ( 0 $r 0) // cyl top front

arc v14 v15 ( 0 $r $w) // cyl top back

arc v7 v4 (-$r 0 0) // cyl left front

arc v17 v14 (-$r 0 $w) // cyl left back

arc v6 v7 ( 0 -$r 0) // cyl bottom front

arc v16 v17 ( 0 -$r $w) // cyl bottom back

arc v5 v6 ( $r 0 0) // cyl right front

arc v15 v16 ( $r 0 $w) // cyl right back

);

boundary (

FrontAndBack {

type empty;

faces (

( v0 v1 v5 v4) // top front

(v10 v14 v15 v11) // top back

( v3 v0 v4 v7) // left front

(v13 v17 v14 v10) // left back

( v2 v3 v7 v6) // bottom front

(v12 v16 v17 v13) // bottom back

( v1 v2 v6 v5) // right front

(v11 v15 v16 v12) // right back

( v1 v8 v9 v2) // wake front

(v11 v12 v19 v18) // wake back

);

}

TopAndBottom {

type patch;

faces (

( v0 v10 v11 v1) // top
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( v1 v11 v18 v8) // top wake

( v2 v12 v13 v3) // bottom

( v9 v19 v12 v2) // bottom wake

);

}

Inlet {

type patch;

faces (

(v0 v3 v13 v10)

);

}

Outlet {

type patch;

faces (

(v8 v18 v19 v9)

);

}

cylinder {

type patch;

faces (

( v5 v15 v14 v4) // top

( v4 v14 v17 v7) // left

( v7 v17 v16 v6) // bottom

( v6 v16 v15 v5) // right

);

}

);

B.8 Swift-Hohenberg: createFields.H

Info<< "Reading field psi\n" << endl;

volScalarField psi

(

IOobject

(

"psi",

runTime.timeName(),

mesh,

IOobject::MUST_READ,

IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading field U\n" << endl;

volVectorField U

(

IOobject

(

"U",

runTime.timeName(),

mesh,

IOobject::MUST_READ,
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IOobject::AUTO_WRITE

),

mesh

);

Info<< "Reading transportProperties:" << endl;

IOdictionary transportProperties

(

IOobject

(

"transportProperties",

runTime.constant(),

mesh,

IOobject::MUST_READ_IF_MODIFIED,

IOobject::NO_WRITE

)

);

Info<< "Reading eps = ";

dimensionedScalar eps("eps", dimensionSet( 0, 0, 0, 0, 0, 0, 0),

transportProperties);

Info<< eps << endl << "Reading A = ";

dimensionedScalar A("A", dimensionSet( 0, 0, 0, 0, 0, 0, 0),

transportProperties);

Info<< A << endl;

#include "createPhi.H"

#include "createFvOptions.H"

B.9 Swift-Hohenberg: mySolver.C

#include "fvCFD.H"

#include "fvOptions.H"

#include "simpleControl.H"

int main(int argc, char *argv[])

{

argList::addNote

(

"Solve Swift-Hohenberg Equation."

);

#include "addCheckCaseOptions.H"

#include "setRootCaseLists.H"

#include "createTime.H"

#include "createMesh.H"

simpleControl simple(mesh);

#include "createFields.H"

Info<< "\nSolving Swift-Hohenberg Equation\n" << endl;

#include "CourantNo.H"

dimensionedScalar ons(dimensionSet( 0, 0, -1, 0, 0, 0, 0), 1);

dimensionedScalar tns(dimensionSet( 0, 4, -1, 0, 0, 0, 0), 1);

dimensionedScalar two(dimensionSet( 0, 2, -1, 0, 0, 0, 0), 2);

while (simple.loop())

{

Info<< "Time = " << runTime.timeName() << nl << endl;

while (simple.correctNonOrthogonal())
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{

fvScalarMatrix psiEqn

(

fvm::ddt(psi)

- (eps { 1)*psi*ons

+ fvm::laplacian(two, psi)

+ fvc::laplacian(tns*fvc::laplacian(psi))

- psi*psi*(A-psi)*ons

==

fvOptions(psi)

);

psiEqn.relax();

fvOptions.constrain(psiEqn);

psiEqn.solve();

fvOptions.correct(psi);

}

runTime.write();

}

Info<< "End\n" << endl;

return 0;

}

B.10 Swift-Hohenberg: system/blockMeshDict

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

scale 1;

wi 128; // length and width of the domain

wir 256; // number of cells along each x and y

vertices

(

name v0 (0 0 0)

name v1 ($wi 0 0)

name v2 ($wi $wi 0)

name v3 (0 $wi 0)

name v4 (0 0 0.1)

name v5 ($wi 0 0.1)

name v6 ($wi $wi 0.1)

name v7 (0 $wi 0.1)

);

blocks

(

hex (v0 v1 v2 v3 v4 v5 v6 v7) ($wir $wir 1) simpleGrading (1 1 1)

);

edges ( );

boundary

(
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top

{

type cyclic;

neighbourPatch bottom;

faces ((v3 v7 v6 v2));

}

bottom

{

type cyclic;

neighbourPatch top;

faces ((v0 v1 v5 v4));

}

left

{

type cyclic;

neighbourPatch right;

faces ((v0 v4 v7 v3));

}

right

{

type cyclic;

neighbourPatch left;

faces ((v2 v6 v5 v1));

}

frontAndBack

{

type empty;

faces

(

(v0 v3 v2 v1)

(v4 v5 v6 v7)

);

}

);

B.11 Swift-Hohenberg: constant/transportProper-

ties

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object transportProperties;

}

eps 0.1;

A 0.0; // for hexagons A = 0.5; for roles A = 0.0
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B.12 Swift-Hohenberg: 0/U

FoamFile {

version 2.0;

format ascii;

class volVectorField;

object U;

}

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField {

top { type cyclic; }

bottom { type cyclic; }

left { type cyclic; }

right { type cyclic; }

frontAndBack { type empty; }

}

B.13 Swift-Hohenberg: 0/psi

FoamFile {

version 2.0;

format ascii;

class volScalarField;

object psi;

}

dimensions [0 0 0 0 0 0 0];

// internalField uniform 0;

internalField #codeStream

{

codeInclude

#{

#include "fvCFD.H"

#};

codeOptions

#{

-I$(LIB_SRC)/finiteVolume/lnInclude \

-I$(LIB_SRC)/meshTools/lnInclude

#};

codeLibs

#{

-lmeshTools \

-lfiniteVolume

#};

code

#{

const IOdictionary& d = static_cast<const Iodictionary&>(dict);

const fvMesh& mesh = refCast<const fvMesh>(d.db());

scalarField psi(mesh.nCells(), 0.);

std::mt19937 gen(12345); // C++ STL

const double ampl = 0.001;

std::uniform_real_distribution<> dis(-ampl, ampl); // C++ STL
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forAll(psi, I)

{

// We left in the commented out code for illustration what's possible

// const scalar x = mesh.C()[i][0];

// const scalar y = mesh.C()[i][1];

// const scalar z = mesh.C()[i][2];

// psi[i] = sin(x)*sin(y);

psi[i] = dis(gen);

}

psi.writeEntry("", os);

#};

};

boundaryField {

top { type cyclic; }

bottom { type cyclic; }

left { type cyclic; }

right { type cyclic; }

frontAndBack { type empty; }

}

B.14 Swift-Hohenberg: system/controlDict

FoamFile {

version 2.0;

format ascii;

class dictionary;

object controlDict;

}

application mySolver;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 300.;

deltaT 0.001;

writeControl timeStep;

writeInterval 10000;

purgeWrite 0;

writeFormat ascii;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;
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B.15 Swift-Hohenberg: system/fvSchemes and sys-

tem/fvSolution

FoamFile {

version 2.0;

format ascii;

class dictionary;

object fvSchemes;

}

ddtSchemes {

default Euler;

}

gradSchemes {

default Gauss linear;

}

divSchemes {

default none;

// div(phi,T) Gauss linearUpwind grad(T);

}

laplacianSchemes {

default none;

laplacian(psi) Gauss linear corrected;

laplacian((1*laplacian(psi))) Gauss linear corrected;

laplacian(2,psi) Gauss linear corrected;

}

interpolationSchemes {

default linear;

}

snGradSchemes {

default corrected;

}

FoamFile {

version 2.0;

format ascii;

class dictionary;

object fvSolution;

}

solvers {

psi {

solver PbiCGStab;

preconditioner FDIC; // GAMG;

tolerance 1e-06;

relTol 0;

}

}

SIMPLE {

nNonOrthogonalCorrectors 0;

}
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